Wall

Time Limit: 1000MS Memory Limit: 10000K

Description

Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King’s castle. The King was so greedy, that he would not listen to his Architect’s proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall.



Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King’s requirements.

The task is somewhat simplified by the fact, that the King’s castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle’s vertices in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King’s castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle.

Next N lines describe coordinates of castle’s vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King’s requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100

200 400

300 400

300 300

400 300

400 400

500 400

500 200

350 200

200 200

Sample Output

1628

Hint

结果四舍五入就可以了

Source

Northeastern Europe 2001


哇!!又一道简单的计算几何!这道题如果把图读懂就是一道凸包的裸板,按照它题上的说法,我们只需要求出该图形的凸包,然后将凸包的每一条边按与其垂直的方向平移ddd个单位,然后将各线段用圆弧连接构成一个新的图形,最后求出这个图形的周长即可。通过画图,我们可以发现一个显然的结论:所有圆弧的圆心角之和为360360360度,这样的话我们实际上只用求一个圆的周长加上一个凸包的周长即可。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define N 1005
using namespace std;
double r,ans=0;
int tot=0,n,q[N],len;
struct pot{double x,y;}p[N];
inline bool cmp(pot a,pot b){return a.x==b.x?a.y<b.y:a.x<b.x;}
inline pot operator-(pot a,pot b){return pot{a.x-b.x,a.y-b.y};}
inline double cross(pot a,pot b){return a.x*b.y-a.y*b.x;}
inline double dis(pot a,pot b){return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));}
inline void graham(){
	sort(p+1,p+n+1,cmp);
	q[++tot]=1;
	for(int i=2;i<=n;++i){
		while(tot>1&&cross(p[q[tot]]-p[q[tot-1]],p[i]-p[q[tot-1]])<=0)--tot;
		q[++tot]=i;
	}
	len=tot;
	for(int i=n-1;i>=1;--i){
		while(tot>len&&cross(p[q[tot]]-p[q[tot-1]],p[i]-p[q[tot-1]])<=0)--tot;
		q[++tot]=i;
	}
	for(int i=1;i<tot;++i)ans+=dis(p[q[i]],p[q[i+1]]);
	ans+=2.0*r*3.14159265;
}
int main(){
	scanf("%d%lf",&n,&r);
	for(int i=1;i<=n;++i)scanf("%lf%lf",&p[i].x,&p[i].y);
	graham();
	printf("%lld",(long long)(ans+0.5));
	return 0;
}

2018.07.04 POJ 1113 Wall(凸包)的更多相关文章

  1. POJ 1113 Wall 凸包 裸

    LINK 题意:给出一个简单几何,问与其边距离长为L的几何图形的周长. 思路:求一个几何图形的最小外接几何,就是求凸包,距离为L相当于再多增加上一个圆的周长(因为只有四个角).看了黑书使用graham ...

  2. poj 1113 Wall 凸包的应用

    题目链接:poj 1113   单调链凸包小结 题解:本题用到的依然是凸包来求,最短的周长,只是多加了一个圆的长度而已,套用模板,就能搞定: AC代码: #include<iostream> ...

  3. 2018.07.04 POJ 1696 Space Ant(凸包卷包裹)

    Space Ant Time Limit: 1000MS Memory Limit: 10000K Description The most exciting space discovery occu ...

  4. POJ 1113 Wall 凸包求周长

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26286   Accepted: 8760 Description ...

  5. POJ 1113 - Wall 凸包

    此题为凸包问题模板题,题目中所给点均为整点,考虑到数据范围问题求norm()时先转换成double了,把norm()那句改成<vector>压栈即可求得凸包. 初次提交被坑得很惨,在GDB ...

  6. 2018.07.04 POJ 1654 Area(简单计算几何)

    Area Time Limit: 1000MS Memory Limit: 10000K Description You are going to compute the area of a spec ...

  7. poj 1113 wall(凸包裸题)(记住求线段距离的时候是点积,点积是cos)

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 43274   Accepted: 14716 Descriptio ...

  8. 2018.07.04 POJ 1265 Area(计算几何)

    Area Time Limit: 1000MS Memory Limit: 10000K Description Being well known for its highly innovative ...

  9. 2018.07.04 POJ 3304 Segments(简单计算几何)

    Segments Time Limit: 1000MS Memory Limit: 65536K Description Given n segments in the two dimensional ...

随机推荐

  1. 问题:ClientIDMode属性;结果:ASP.NET 4.0的ClientIDMode属性

    ASP.NET 4.0的ClientIDMode属性 时光流逝,我们心爱的ASP.NET也步入了4.0的时代,微软在ASP.NET 4.0中对很多特性做了修改.比如我将要讨论的控件ID机制就是其中之一 ...

  2. leetcode27

    public class Solution { public int RemoveElement(int[] nums, int val) { var len = nums.Length; ; ; i ...

  3. XCode iOS Simulator 模拟器

    XCode7.3下,默认带了iOS 9.3 Simulator,iOS 8.4 Simulator总是安装不成功. mac os X,里的模拟器,全屏 ,windows win键+1/2/3 切换全屏 ...

  4. J2SE 8的脚本

    1. 引擎工厂的属性 引擎 名字 MIME类型 文件扩展 Nashorn nashorn,Nashornjs,JSJavaScript,javascriptECMAScript,mcmascript ...

  5. VB 调用动态链接库

    作为一种简单易用的Windows开发环境,Visual Basic从一推出就受到了广大编程人员的欢迎.它使 程序员不必再直接面对纷繁复杂的Windows消息,而可以将精力主要集中在程序功能的实现上,大 ...

  6. Spring MVC 视图及视图解析器

    org.springframework.web.servlet.view.InternalResoureceViewResolve 把逻辑视图改为物理视图 可混用多种视图 不进过Handler直接进入 ...

  7. WP runtime 获取cookie

    HttpBaseProtocolFilter httpBaseProtocolFilter = new HttpBaseProtocolFilter(); HttpCookieManager http ...

  8. 使用Jena执行SPARQL的Select和Ask查询

    使用Jena执行SPARQL的Select和ask查询 提供基本的接口和实现类,可在其他代码中直接调用 Select查询 接口 /** * The interface Select dao. * 本体 ...

  9. (一)由浅入深学习springboot中使用redis

    很多时候,我们会在springboot中配置redis,但是就那么几个配置就配好了,没办法知道为什么,这里就详细的讲解一下 这里假设已经成功创建了一个springboot项目. redis连接工厂类 ...

  10. nginx的配置文件解析

    worker_processes ;#工作进程的个数,一般与计算机的cpu核数一致 events { worker_connections ;#单个进程最大连接数(最大连接数=连接数*进程数) } h ...