Codeforces 题目传送门 & 洛谷题目传送门

一道线性基的综合题 %%%%%%

首先注意到“非简单路径”“异或和”等字眼,可以本能地想到线性基。根据线性基那一套理论,一个值 \(v\) 可以表示为某个 \(1\to 1\) 的非简单回路上边权的异或和当前节点它可以表示为 \(1\) 所在连通块的若干个 \(\ge 1\) 简单环上权值的异或和。其次我们还可以注意到本题至于很小,最高不过 \(2^5-1=31\),而稍微打个表即可发现大小为 \(5\) 的本质不同的线性基个数只有 \(374\) 个,因此可以暴搜求出所有本质不同的线性基,具体来说我们每次枚举 \(i=1,2,3,\cdots,31\),如果当前线性基里能够插入 \(i\) 就插入 \(i\) 并继续 DFS 下去,复杂度 \(374\times 31\times 5\),不会出问题。

然后考虑以线性基为状态的 DP,我们假设去掉 \(1\) 号点之后原图有 \(m\) 个连通块,注意到我们只能删除与 \(1\) 相连的边,故每个连通块内部环的情况是不受影响的,因此我们可以先按照 P4151 [WC2011]最大XOR和路径 的套路求出每个连通块中所有环的异或和组成的线性基,当然如果这个线性基是线性有关集那说明如果这个连通块如果与 \(1\) 相连就会存在不合法的路径,也就是说这个连通块必须与 \(1\) 断开,这个维护一个数组 \(ok_i\) 表示编号为 \(i\) 的连通块是否合法即可。不难发现每个连通块只可能有两种可能,一是连通块内部存在一个与 \(1\) 相连的点,二是连通块内部存在两个与 \(1\) 相连的点,不可能出现三个及以上与 \(1\) 相连的点,否则就会出现长度 \(>3\) 的经过 \(1\) 的环了,记 \(dp_{i,j}\) 为考虑前 \(i\) 个连通块,当前线性基为 \(j\)(我们将大小为 \(5\) 的本质不同的线性基编号 \(1,2,3,\cdots,374\))的方案数,考虑按照上面的分析过程分情况讨论:

  • 若 \(ok_i=0\),那么 \(1\) 与当前连通块之间的边必须断开,即 \(dp_{i,j}=dp_{i-1,j}\)
  • 若 \(ok_i=1\),继续分两种情况:
    • 连通块内部存在一个与 \(1\) 相连的点,记 \(b_i\) 为连通块 \(i\) 的线性基,那么如果断开与 \(1\) 相连的边线性基不会发生变化,即 \(dp_{i,j}\leftarrow dp_{i-1,j}\),否则相当于将线性基 \(j\) 与 \(b_i\) 进行合并,即 \(dp_{i,j\cup b_i}\leftarrow dp_{i-1,j}\)
    • 连通块内部存在两个与 \(1\) 相连的点,如果断开两条与 \(1\) 相连的边,线性基不会发生变化,即 \(dp_{i,j}\leftarrow dp_{i-1,j}\),如果断开一条与 \(1\) 相连的边,相当于将线性基 \(j\) 与 \(b_i\) 进行合并,即 \(dp_{i,j\cup b_i}\leftarrow 2·dp_{i-1,j}\),如果与 \(1\) 相连的边都不断开,那么这部分会多出一个环没有加入线性基,这个环就是经过 \(1\) 的三元环,记 \(w\) 为该三元环的权值异或和,那么 \(dp_{i,j\cup b_i\cup w}\leftarrow dp_{i-1,j}\)

预处理线性基的合并关系即可在常数时间内实现转移,时间复杂度 \(155\times 374+374^2+374n\)

const int MAXN=1e5;
const int MAXB=380;
const int MOD=1e9+7;
int n,m;
struct lbase{
int a[5];
lbase(){memset(a,0,sizeof(a));}
bool insert(int x){
for(int i=4;~i;i--) if(x>>i&1){
if(a[i]) x^=a[i];
else{
a[i]=x;
for(int j=0;j<i;j++) if(a[i]>>j&1) a[i]^=a[j];
for(int j=i+1;j<=4;j++) if(a[j]>>i&1) a[j]^=a[i];
return 1;
}
} return 0;
}
int hash(){return (a[4]<<10)|(a[3]<<6)|(a[2]<<3)|(a[1]<<1)|a[0];}
} b[MAXB+5],c[MAXN+5];
int rid[MAXN+5],num=0;
void dfsfind(lbase cur){
int hs=cur.hash();if(rid[hs]) return;
else rid[hs]=++num,b[num]=cur;
for(int i=1;i<=31;i++){
lbase nxt=cur;
if(nxt.insert(i)) dfsfind(nxt);
}
}
int trs[MAXB+5][MAXB+5];
void init_trs(){
for(int i=1;i<=num;i++) for(int j=1;j<=num;j++){
lbase tmp=b[i];bool ok=1;
for(int k=0;k<=4;k++) if(b[j].a[k]) ok&=tmp.insert(b[j].a[k]);
if(ok) trs[i][j]=rid[tmp.hash()];
}
}
int hd[MAXN+5],to[MAXN*2+5],val[MAXN*2+5],nxt[MAXN*2+5],ec=0;
void adde(int u,int v,int w){to[++ec]=v;val[ec]=w;nxt[ec]=hd[u];hd[u]=ec;}
int bel[MAXN+5],dis[MAXN+5],ok[MAXN+5],cmp=0,con[MAXN+5],fst[MAXN+5];
bool is[MAXN+5];int dfn[MAXN+5],tim=0;
void dfs(int x,int f){
bel[x]=cmp;dfn[x]=++tim;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e],z=val[e];if(y==1) continue;
if(!bel[y]) dis[y]=dis[x]^z,dfs(y,x);
else if(y!=f&&dfn[x]>dfn[y]) ok[cmp]&=c[cmp].insert(dis[x]^dis[y]^z);
}
}
int dp[MAXN+5][MAXB+5];
int main(){
scanf("%d%d",&n,&m);dfsfind(*new(lbase));init_trs();
for(int i=1,u,v,w;i<=m;i++){
scanf("%d%d%d",&u,&v,&w);
adde(u,v,w);adde(v,u,w);
} //printf("%d\n",num);
for(int e=hd[1];e;e=nxt[e]){
int y=to[e],z=val[e];
if(!bel[y]){
cmp++;ok[cmp]=1;con[cmp]=z;
fst[cmp]=y;dfs(y,-1);
} else {
for(int ee=hd[y];ee;ee=nxt[ee]){
int v=to[ee],w=val[ee];
if(v==fst[bel[y]]){
is[bel[y]]=1;con[bel[y]]^=w^z;
break;
}
}
}
}
dp[0][rid[0]]=1;
for(int i=1;i<=cmp;i++){
for(int j=1;j<=num;j++) dp[i][j]=dp[i-1][j];
if(!ok[i]) continue;
if(!is[i]){
int id=rid[c[i].hash()];
for(int j=1;j<=num;j++) if(trs[j][id]){
dp[i][trs[j][id]]=(dp[i][trs[j][id]]+dp[i-1][j])%MOD;
}
} else {
int id1=rid[c[i].hash()];
bool ok=c[i].insert(con[i]);
int id2=rid[c[i].hash()];
for(int j=1;j<=num;j++){
if(trs[j][id1]) dp[i][trs[j][id1]]=(dp[i][trs[j][id1]]+2*dp[i-1][j]%MOD)%MOD;
if(ok&&trs[j][id2]) dp[i][trs[j][id2]]=(dp[i][trs[j][id2]]+dp[i-1][j]%MOD)%MOD;
}
}
} int ans=0;
for(int i=1;i<=num;i++) ans=(ans+dp[cmp][i])%MOD;
printf("%d\n",ans);
return 0;
}

Codeforces 1299D - Around the World(线性基+图论+dp)的更多相关文章

  1. 洛谷P4151 最大XOR和路径 [WC2011] 线性基+图论

    正解:线性基+图论 解题报告: 传送门 首先可以思考一下有意义的路径会是什么样子,,,那就一定是一条链+一些环 挺显然的因为一条路径原路返回有没有意义辣?所以一定是走一条链+一些环(当然也可以麻油环, ...

  2. 【做题】CF388D. Fox and Perfect Sets——线性基&数位dp

    原文链接https://www.cnblogs.com/cly-none/p/9711279.html 题意:求有多少个非空集合\(S \subset N\)满足,\(\forall a,b \in ...

  3. Codeforces 938G 线段树分治 线性基 可撤销并查集

    Codeforces 938G Shortest Path Queries 一张连通图,三种操作 1.给x和y之间加上边权为d的边,保证不会产生重边 2.删除x和y之间的边,保证此边之前存在 3.询问 ...

  4. 【题解】 Codeforces 662A Gambling Nim (线性基)

    662A,戳我戳我 Solution: 我们先取\(ans=a[1] \bigoplus a[2] \bigoplus ... \bigoplus a[n]\),然后我们定义\(c[i]=a[i] \ ...

  5. codeforces 1100F Ivan and Burgers 线性基 离线

    题目传送门 题意: 给出 n 个数,q次区间查询,每次查询,让你选择任意个下标为 [ l , r ] 区间内的任意数,使这些数异或起来最大,输出最大值. 思路:离线加线性基. 线性基学习博客1 线性基 ...

  6. [bzoj 2115]线性基+图论

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2115 给定一个带权无向图,要找出从1到n路径权值异或和最大的那一条的路径异或和. 考虑1到 ...

  7. BZOJ CF388D. Fox and Perfect Sets [线性基 数位DP]

    CF388D. Fox and Perfect Sets 题意:求最大元素\(le n\)的线性空间的个数 给神题跪了 orz 容易想到 每个线性基对应唯一的线性空间,我们可以统计满足条件的对应空间不 ...

  8. bzoj 3811: 玛里苟斯【线性基+期望dp】

    这个输出可是有点恶心啊--WA*inf,最后抄了别人的输出方法orz 还有注意会爆long long,要开unsigned long long 对于k==1,单独考虑每一位i,如果这一位为1则有0.5 ...

  9. codeforces 388D Fox and Perfect Sets(线性基+数位dp)

    #include<bits/stdc++.h> using namespace std; #define fi first #define se second #define mp mak ...

随机推荐

  1. 【UE4】GAMES101 图形学作业2:光栅化和深度缓存

    总览 在上次作业中,虽然我们在屏幕上画出一个线框三角形,但这看起来并不是那么的有趣.所以这一次我们继续推进一步--在屏幕上画出一个实心三角形,换言之,栅格化一个三角形.上一次作业中,在视口变化之后,我 ...

  2. vue3.x相对于vue2.x生命周期改动

    vue3.x已经正式发布了,部分小伙伴已经用了vue3.x开发,部分小伙伴还在观望中,下面是两个影响比较大的改动 1.beforeDestroy和destroyed不能用了. 这个应该是vue2.x项 ...

  3. Ubuntu 用户管理/权限管理

    Ubuntu 用户管理/权限管理 小小记录一下 Ubuntu 下用户/权限管理常用的一些命令 用户管理 组管理 文件权限 给用户添加 sudo 权限 给用户添加 sudo 权限 首先先给出几个文件 / ...

  4. Spring Cloud Alibaba 的服务注册与发现

    Spring Cloud Alibaba 服务发现例子 一.需求 1.提供者完成的功能 2.消费者完成的功能 3.可以附加的额外配置 二.实现步骤 1.总的依赖引入 2.服务提供者和发现者,引入服务发 ...

  5. 浅谈如何爆踩TLEcoders

    对付一些速度比老奶奶都慢的评测姬, 除了超级小的常数,往往还不得不使用一些不算办法的办法 比如说这个让人无语的$ACcoders$的评测姬, 当我们感到代码已经无法再卡常的时候,对人生已经近乎绝望的时 ...

  6. n阶行列式计算

    1.化为上下三角 该类型的矩阵.行列式在之前写过(https://www.cnblogs.com/wangzheming35/p/12906624.html),也建议记住这个行列式的结论. 当然不仅仅 ...

  7. 【做题记录】[NOIP2011 提高组] 观光公交

    P1315 [NOIP2011 提高组] 观光公交 我们想在 \(k\) 次加速每一次都取当前最优的方案加速. 考虑怎样计算对于每一条边如果在当前情况下使用加速器能够使答案减少的大小. 如果当前到达某 ...

  8. Spring Security:简单的保护一个SpringBoot应用程序(总结)

    Spring Security 在 Java类中的配置 在 Spring Security 中使用 Java配置,可以轻松配置 Spring Security 而无需使用 XML . 在Spring ...

  9. TT模板的作用及使用

    一.假如你在ef中添加一个实体,没有模板,你需要在DAL层中新建一个"莫某Dal"和"I某某Dal"以及在公共的DbSession中加你的这个dal,然后需要在 ...

  10. (转载)linux chmod命令用法

    chmod----改变一个或多个文件的存取模式(mode) chmod [options] mode files   只能文件属主或特权用户才能使用该功能来改变文件存取模式.mode可以是数字形式(八 ...