正题

题目链接:https://www.luogu.com.cn/problem/CF643F


题目大意

题目有点奇怪就直接放翻译了

有 \(n\) 只熊和若干桶果汁和恰好一桶酒,每一天每只熊会选择一些桶(可能不选)并各喝一 杯,喝到酒的熊会去睡觉并不再回来,通过这个信息,熊们想知道哪个桶里是酒。

只有 \(p\) 个睡 觉的位置,当睡觉的熊超过了 \(p\) 只或者所有熊都在睡觉时熊们就失败了。

令 \(R_i\) 表示在 \(i\) 天内桶的数量最多少,使得熊可以成功知道酒的位置。令 \(X_i = (i\times R_i) \bmod 2^{32}\),你需要求出 \(X_1 \oplus X_2 \oplus\ldots \oplus X_q\)。

\(1\leq n\leq 10^9\),\(1\leq p\leq 130\),\(1\leq q \leq 2\times 10^6\)。


解题思路

之前在XJ杂题选讲时候的神奇题目

题目比较乱但是我们发现题目问的是最多的数量,而不是最劣情况下的最多数量,所以这个东西是在最优情况下能分辨的数量。

这是我们之前很少接触的一种形式,这里需要用到信息的概念,因为我们是最优的,相当于我们所有的情况都可以去尝试,也就是每种信息都可以为我们选出一个答案,那么显然我们让选出的这些答案两两不同肯定就是最优的,所以这里的\(R_i\)就表示\(i\)天以内我们能够获取的信息的数量

那么我们现在能够得到的信息数就是有多少头熊睡着了,和分别在哪一天睡着的,那么有

\[R_i=\sum_{j=1}^{min\{p-1,n\}}\binom{n}{j}i^j
\]

也就是组合睡觉的熊,然后每个睡觉的都可以在任意天的时候睡觉

这个东西主要是\(\binom{n}{j}\)因为没有逆元比较麻烦,但是因为\(j\)比较小所以我们可以直接暴力枚举上下的因子然后消掉他们的\(gcd\)就好了

时间复杂度\(O(p^3\log p+q\times p)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
int n,p,q;
unsigned ans,f[300];
vector<int> a,b;
int main()
{
scanf("%d%d%d",&n,&p,&q);
p=min(n-1,p);
for(int i=0;i<=p;i++){
a.clear();b.clear();f[i]=1;
for(int j=0;j<i;j++)a.push_back(n-j);
for(int j=1;j<=i;j++)b.push_back(j);
for(int x=0;x<a.size();x++)
for(int y=0;y<b.size();y++){
int d=__gcd(a[x],b[y]);
a[x]/=d;b[y]/=d;
}
for(int x=0;x<a.size();x++)f[i]=1u*a[x]*f[i];
}
for(int i=1,t=1;i<=q;i++){
unsigned tmp=0,k=1;
for(int j=0;j<=p;j++,k=1u*i*k)
tmp+=f[j]*k;
ans^=1u*i*tmp;
}
printf("%u",ans);
}

CF643F-Bears and Juice【组合数学】的更多相关文章

  1. Codeforces 643F - Bears and Juice(思维题)

    Codeforces 题目传送门 & 洛谷题目传送门 首先直接暴力枚举显然是不现实的,我们不妨换个角度来处理这个问题,考虑这 \(R_i\) 个瓶子中每一瓶被哪些熊在哪一天喝过. 我们考虑对这 ...

  2. 【BZOJ-4435】Juice Junctions 最小割树(分治+最小割)+Hash

    4435: [Cerc2015]Juice Junctions Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 20  Solved: 11[Submi ...

  3. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

  4. ural 2071. Juice Cocktails

    2071. Juice Cocktails Time limit: 1.0 secondMemory limit: 64 MB Once n Denchiks come to the bar and ...

  5. 组合数学or not ---- n选k有重

    模板问题: 1. 取物品 (comb.pas/c/cpp) [问题描述] 现在有n个物品(有可能相同),请您编程计算从中取k个有多少种不同的取法.[输入] 输入文件有两行,第一行包含两个整数n,k(2 ...

  6. 组合数学(全排列)+DFS CSU 1563 Lexicography

    题目传送门 /* 题意:求第K个全排列 组合数学:首先,使用next_permutation 函数会超时,思路应该转变, 摘抄网上的解法如下: 假设第一位是a,不论a是什么数,axxxxxxxx一共有 ...

  7. uestc1888 Birthday Party    组合数学,乘法原理

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=25539#problem/G 题目意思: 有n个人,每个人有一个礼物,每个人能拿 ...

  8. UVA 11076 Add Again 计算对答案的贡献+组合数学

    A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs ...

  9. POJ3252——Round Number(组合数学)

    Round Numbers DescriptionThe cows, as you know, have no fingers or thumbs and thus are unable to pla ...

随机推荐

  1. kubebuilder实战之四:operator需求说明和设计

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  2. 关于c#:如何在不同的命名空间中处理相同的类名?

    How to handle same class name in different namespaces? 我正在尝试创建一个通用的库结构. 我通过为我想要的每个公共库创建单独的项目来做到这一点 我 ...

  3. CPU 进程 线程 关系与区别

  4. C# 利用反射进行深拷贝

  5. Mysql---C#在cmd中使用mysqldump导出sql文件

    一.概述 本文描述了在C#中利用mysqldump工具导出sql文件. 二.代码片段 CmdHelper类代码如下: public class CmdHelper { public static st ...

  6. kettle 查询 tinyint 值为 Y,kettle 查询 tinyint 为布尔值

     问题解决方法 1.在数据库连接中的[选项]命令参数中加入:tinyInt1isBit = false,如下图: 实际场景:

  7. jwt三种方式

    package library.book.demo.config.loginconfig; import com.alibaba.fastjson.JSON; import com.sun.org.a ...

  8. Ubuntu中添加desktop entry

    创建desktop文件 gedit my_app.desktop 添加文件内容,在启动时,选择加载的bashrc文件,用于初始化,这样可以用不同的desktop entry启动不同的环境,提高打开环境 ...

  9. Seq2Seq sequence-to-sequence模型 简介

    Sequence-to-sequence (seq2seq) 模型. 突破了传统的固定大小输入问题框架 开创了将DNN运用于翻译.聊天(问答)这类序列型任务的先河 并且在各主流语言之间的相互翻译,和语 ...

  10. Linux下Sed命令替换文件中的所有IP

    命令: sed -ri 's/([0-9]{1,3}\.){3}[0-9]{1,3}/localhost/g' es_create_index.sh 如图: