Redundant Paths

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample:

One visualization of the paths is:

   1   2   3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +

Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

   1   2   3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -

Check some of the routes: 
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 
Every pair of fields is, in fact, connected by two routes.

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

 
题意:为了保护放牧环境,避免牲畜过度啃咬同一个地方的草皮,牧场主决定利用不断迁移牲畜进行喂养的方法去保护牧草。然而牲畜在迁移过程中也会啃食路上的牧草,所以如果每次迁移都用同一条道路,那么该条道路同样会被啃咬过度而遭受破坏。现在牧场主拥有F个农场,已知这些农场至少有一条路径连接起来(不一定是直接相连),但从某些农场去另外一些农场,至少有一条路可通行。为了保护道路上的牧草,农场主希望再建造若干条道路,使得每次迁移牲畜时,至少有2种迁移途径,避免重复走上次迁移的道路。已知当前有的R条道路,问农场主至少要新建造几条道路,才能满足要求?

题解:把F个农场看作点、路看作边构造一个无向图G时,图G不存在桥。

也就是问给定一个连通的无向图G,至少要添加几条边,才能使其变为双连通图。

把每一个双连通分量(内部满足条件)缩为一个点,形成一棵树,加(n+1)/2条边就是双连通了(度为1的点个数为n)

注意:判断两个点是不是同一个双连通分量

1.无重边:low值相等就是同一个双连通分量

2.有重边:bfs结束时出栈的就是同一连通分量,好像有点麻烦

这里加了一个判断,不加重边

#include<stdio.h>
#include <algorithm>
#include <string.h>
#define N 5005
#define mes(x) memset(x, 0, sizeof(x));
#define ll __int64
const long long mod = 1e9+;
const int MAX = 0x7ffffff;
using namespace std;
struct ed{
int to, next;
}edge[N*];
int head[N], top=;
bool mp[N][N];
int pre[N], low[N], dfs_time, out[N];
void addedge(int u,int v){
edge[top].to = v;
edge[top].next = head[u];
head[u] = top++;
}
void dfs(int u,int father){
low[u] = pre[u] = dfs_time++;
for(int i=head[u];i!=-;i=edge[i].next){
int v = edge[i].to;
if(v == father) continue;
if(!pre[v]){
dfs(v, u);
low[u] = min(low[v], low[u]);
}
else low[u] = min(low[u], pre[v]);
}
}
int main(){
int n, m, t, i, j, a, b;
while(~scanf("%d%d", &n, &m)){
memset(head, -, sizeof(head));
memset(pre,,sizeof(pre));
memset(low, , sizeof(low));
memset(out, , sizeof(out));
memset(mp, false, sizeof(mp));
dfs_time = ;top = ;
for(i=;i<=m;i++){
scanf("%d%d", &a, &b);
if(!mp[a][b]){
mp[a][b] = mp[b][a] = ;
addedge(a, b);
addedge(b, a);
}
}
dfs(,-);
t = ;
for(i=;i<=n;i++)
for(j=head[i];j!=-;j=edge[j].next){
int v = edge[j].to;
if(low[v] != low[i])
out[low[i]]++;
}
for(i=;i<=n;i++)
if(out[i] == )
t++;
printf("%d\n", (t+)/);
}
}

POJ3177 Redundant Paths 双连通分量的更多相关文章

  1. POJ3177 Redundant Paths(边双连通分量+缩点)

    题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...

  2. poj3352 Road Construction & poj3177 Redundant Paths (边双连通分量)题解

    题意:有n个点,m条路,问你最少加几条边,让整个图变成边双连通分量. 思路:缩点后变成一颗树,最少加边 = (度为1的点 + 1)/ 2.3177有重边,如果出现重边,用并查集合并两个端点所在的缩点后 ...

  3. poj3177 Redundant Paths 边双连通分量

    给一个无向图,问至少加入多少条边能够使图变成双连通图(随意两点之间至少有两条不同的路(边不同)). 图中的双连通分量不用管,所以缩点之后建新的无向无环图. 这样,题目问题等效于,把新图中度数为1的点相 ...

  4. POJ3177 Redundant Paths 图的边双连通分量

    题目大意:问一个图至少加多少边能使该图的边双连通分量成为它本身. 图的边双连通分量为极大的不存在割边的子图.图的边双连通分量之间由割边连接.求法如下: 求出图的割边 在每个边双连通分量内Dfs,标记每 ...

  5. POJ3177 Redundant Paths —— 边双联通分量 + 缩点

    题目链接:http://poj.org/problem?id=3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total ...

  6. [POJ3177]Redundant Paths(双联通)

    在看了春晚小彩旗的E技能(旋转)后就一直在lol……额抽点时间撸一题吧…… Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Tota ...

  7. [POJ3177]Redundant Paths(双连通图,割边,桥,重边)

    题目链接:http://poj.org/problem?id=3177 和上一题一样,只是有重边. 如何解决重边的问题? 1.  构造图G时把重边也考虑进来,然后在划分边双连通分量时先把桥删去,再划分 ...

  8. poj3177 && poj3352 边双连通分量缩点

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12676   Accepted: 5368 ...

  9. poj3177(边双连通分量+缩点)

    传送门:Redundant Paths 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任何两个牧场之间至少有两条独立 ...

随机推荐

  1. web开发与设计--js数据类型,js运营商

    1. js数据类型划分:号码值类型,布尔,串 由typeof能够看到什么类型的数据被详述. 举例: <span style="font-family:Microsoft YaHei;f ...

  2. postal邮件发送(一):基本配置

    前言 源码:https://github.com/andrewdavey/postal 文档:http://aboutcode.net/postal/ postal最大好处就是再也不用拼接html发送 ...

  3. iOS后向兼容:如何发现过期接口

    以4.3以下兼容性为例,在项目预编译头文件(xx.pch)中加入如下代码: #import <Availability.h> #define __AVAILABILITY_INTERNAL ...

  4. Spyder提示ValueError: API 'QString' has already been set to version 1

    转载自:http://wuyuans.com/2013/02/spyder-valueerror-api-qstring-has-already-been-set-to-version-1/ 在IPy ...

  5. JAVA学习:内部类

    一.内部类的访问规则: 1.内部类可以直接访问外部类中的成员,包括私有.格式为外部类名.this 2.外部类要访问内部类,必须建立内部类对象. 代码: class Outer { private in ...

  6. JavaScript中Null和Undefined的深渊

    探索JavaScript中Null和Undefined的深渊 当讨论JavaScript中的原始数据类型时,大多数人都知道的基本知识,从String,Number到Boolean.这些原始类型相当简单 ...

  7. Coding Dojo

    Coding Dojo 发表于 2012-10-25 什么是Coding Dojo? Coding Dojo是一个学习的过程.一些程序员(通常是15-20人)在一起编程解决一个程序问题.一边编程,一边 ...

  8. 统计学习方法(三)——K近邻法

    /*先把标题给写了.这样就能经常提醒自己*/ 1. k近邻算法 k临近算法的过程,即对一个新的样本,找到特征空间中与其最近的k个样本,这k个样本多数属于某个类,就把这个新的样本也归为这个类. 算法  ...

  9. 安装mysql-python报错:UnicodeDecodeError: 'ascii' codec can't decode byte 0xe2 in position 65: ordinal not in range(128)

    安装mysql-python报错: UnicodeDecodeError: 'ascii' codec can't decode byte 0xe2 in position 65: ordinal n ...

  10. 教你用Perl 实现Base64编码

    在用脚本后台发送邮件时,需要将html的内容转换成Base64编码的形式,这样邮件客户端会自动对Base64编码的内容进行解码,还原成原来的内容. Base64.pl: #!/usr/bin/perl ...