ZOJ 2675 Little Mammoth(计算几何)
圆形与矩形截面的面积
三角仍然可以做到这一点
代码:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std; const double eps = 1e-8;
const double pi = acos(-1.0); int dcmp(double x)
{
if(x > eps) return 1;
return x < -eps ? -1 : 0;
} struct Point
{
double x, y;
Point(){x = y = 0;}
Point(double a, double b)
{x = a, y = b;}
inline void read()
{scanf("%lf%lf", &x, &y);}
inline Point operator-(const Point &b)const
{return Point(x - b.x, y - b.y);}
inline Point operator+(const Point &b)const
{return Point(x + b.x, y + b.y);}
inline Point operator*(const double &b)const
{return Point(x * b, y * b);}
inline double dot(const Point &b)const
{return x * b.x + y * b.y;}
inline double cross(const Point &b, const Point &c)const
{return (b.x - x) * (c.y - y) - (c.x - x) * (b.y - y);}
inline double Dis(const Point &b)const
{return sqrt((*this - b).dot(*this - b));}
inline bool InLine(const Point &b, const Point &c)const//三点共线
{return !dcmp(cross(b, c));}
inline bool OnSeg(const Point &b, const Point &c)const//点在线段上,包含端点
{return InLine(b, c) && (*this - c).dot(*this - b) < eps;}
}; inline double min(double a, double b)
{return a < b ? a : b;}
inline double max(double a, double b)
{return a > b ? a : b;}
inline double Sqr(double x)
{return x * x;}
inline double Sqr(const Point &p)
{return p.dot(p);} Point LineCross(const Point &a, const Point &b, const Point &c, const Point &d)
{
double u = a.cross(b, c), v = b.cross(a, d);
return Point((c.x * v + d.x * u) / (u + v), (c.y * v + d.y * u) / (u + v));
} double LineCrossCircle(const Point &a, const Point &b, const Point &r,
double R, Point &p1, Point &p2)
{
Point fp = LineCross(r, Point(r.x + a.y - b.y, r.y + b.x - a.x), a, b);
double rtol = r.Dis(fp);
double rtos = fp.OnSeg(a, b) ? rtol : min(r.Dis(a), r.Dis(b));
double atob = a.Dis(b);
double fptoe = sqrt(R * R - rtol * rtol) / atob;
if(rtos > R - eps) return rtos;
p1 = fp + (a - b) * fptoe;
p2 = fp + (b - a) * fptoe;
return rtos;
} double SectorArea(const Point &r, const Point &a, const Point &b, double R)
//不大于180度扇形面积。r->a->b逆时针
{
double A2 = Sqr(r - a), B2 = Sqr(r - b), C2 = Sqr(a - b);
return R * R * acos((A2 + B2 - C2) * 0.5 / sqrt(A2) / sqrt(B2)) * 0.5;
} double TACIA(const Point &r, const Point &a, const Point &b, double R)
//TriangleAndCircleIntersectArea。逆时针,r为圆心
{
double adis = r.Dis(a), bdis = r.Dis(b);
if(adis < R + eps && bdis < R + eps) return r.cross(a, b) * 0.5;
Point ta, tb;
if(r.InLine(a, b)) return 0.0;
double rtos = LineCrossCircle(a, b, r, R, ta, tb);
if(rtos > R - eps) return SectorArea(r, a, b, R);
if(adis < R + eps) return r.cross(a, tb) * 0.5 + SectorArea(r, tb, b, R);
if(bdis < R + eps) return r.cross(ta, b) * 0.5 + SectorArea(r, a, ta, R);
return r.cross(ta, tb) * 0.5 +
SectorArea(r, a, ta, R) + SectorArea(r, tb, b, R);
} const int N = 505; Point p[N], o; double SPICA(int n, Point r, double R)//SimplePolygonIntersectCircleArea
{
int i;
double res = 0, if_clock_t;
for(i = 0; i < n; ++ i)
{
if_clock_t = dcmp(r.cross(p[i], p[(i + 1) % n]));
if(if_clock_t < 0) res -= TACIA(r, p[(i + 1) % n], p[i], R);
else res += TACIA(r, p[i], p[(i + 1) % n], R);
}
return fabs(res);
} double r; int main() {
int bo = 0;
while (~scanf("%lf%lf%lf", &o.x, &o.y, &r)) {
if (bo) printf("\n");
else bo = 1;
double x1, y1, x2, y2;
scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
if (x1 > x2) swap(x1, x2);
if (y1 > y2) swap(y1, y2);
p[0] = Point(x1, y1);
p[1] = Point(x1, y2);
p[2] = Point(x2, y2);
p[3] = Point(x2, y1);
printf("%.10f\n", SPICA(4, o, r));
}
return 0;
}
版权声明:本文博客原创文章,博客,未经同意,不得转载。
ZOJ 2675 Little Mammoth(计算几何)的更多相关文章
- ZOJ 1696 Viva Confetti 计算几何
计算几何:按顺序给n个圆覆盖.问最后能够有几个圆被看见.. . 对每一个圆求和其它圆的交点,每两个交点之间就是可能被看到的圆弧,取圆弧的中点,往外扩展一点或者往里缩一点,从上往下推断有没有圆能够盖住这 ...
- zoj 3537 区间dp+计算几何
题意:给定n个点的坐标,先问这些点是否能组成一个凸包,如果是凸包,问用不相交的线来切这个凸包使得凸包只由三角形组成,根据costi, j = |xi + xj| * |yi + yj| % p算切线的 ...
- ACM计算几何题目推荐
//第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...
- July 【补题】
A(zoj 3596) bfs,记忆搜都可以, 按余数来记录状态. B(zoj 3599) 博弈,跳过 C(zoj 3592) 简单dp,题意不好懂 D(zoj 3602) 子树哈希, 对根的左右儿子 ...
- ZOJ 3157 Weapon --计算几何+树状数组
题意:给一些直线,问这些直线在直线x=L,x=R之间有多少个交点. 讲解见此文:http://blog.sina.com.cn/s/blog_778e7c6e0100q64a.html 首先将直线分别 ...
- ZOJ 3203 Light Bulb (三分+计算几何)
B - Light Bulb Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Submit ...
- ZOJ 1081 Within(点是否在多边形内)| 计算几何
ZOJ 1081 Within 我使用的是"射线法":从该点出发,作一条向左的水平射线,与多边形的边的交点有奇数个则点在多边形内. 需要注意的点: 如果点在多边形的边上特判. 考虑 ...
- zoj 1081:Points Within(计算几何,判断点是否在多边形内,经典题)
Points Within Time Limit: 2 Seconds Memory Limit: 65536 KB Statement of the Problem Several dra ...
- zoj 3716 Ribbon Gymnastics【神奇的计算几何】
题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3716 来源:http://acm.hust.edu.cn/vjudg ...
随机推荐
- 从电商秒杀与抢购谈Web系统大规模并发
从电商秒杀与抢购谈Web系统大规模并发 http://www.iamlintao.com/4242.html 一.大规模并发带来的挑战 在过去的工作中,我曾经面对过5w每秒的高并发秒杀功能,在这个过程 ...
- Golang+Mongodb
Golang+Mongodb打造你的第一个站点 很多人推荐MEAN来开发站点.MEAN就是M:mongodb,E:expressjs.A:angular最后的N:nodejs. 但是如果你亲身的体会到 ...
- 深入理解Android中ViewGroup
文章目录 [隐藏] 一.ViewGroup是什么? 二.ViewGroup这个容器 2.1 添加View的算法 2.1.1 我们先来分析addViewInner方法: 2.1.2 addInArr ...
- 股票作手回忆录Digest(转)
记住,驱动股市的不是理智.逻辑或纯经济因素,驱动股市的是从来不会改变的人的本性.它不会改变,因为它是我们的本性.[4] 在华尔街或在股票投机中,没有什么新的东西.过去发生的事情在将来会一而再,再而三地 ...
- Cocos2d:使用 CCCamera 做滚动效果 (Four Ways of Scrolling with Cocos2D)
原版的:http://www.koboldtouch.com/display/IDCAR/Four+Ways+of+Scrolling+with+Cocos2D There are two class ...
- twitter接口开发
前一阵子研究了下twitter接口,发现网上的资料不是很多.遂花了些心血,终于有所收获~ 现在有时间赶紧整理出来便于自己以后查阅,也想帮助有困难的同学们.废话不多说,现在就以最简洁的方式开始了.注意: ...
- MYSQL-用户权限的验证过程(转)
知识点 因为MySQL是使用User和Host两个字段来确定用户身份的,这样就带来一个问题,就是一个客户端到底属于哪个host. 如果一个客户端同时匹配几个Host,对用户的确定将按照下面的优先级来排 ...
- ABP展现层——Javascript函数库
ABP展现层——Javascript函数库 点这里进入ABP系列文章总目录 基于DDD的现代ASP.NET开发框架--ABP系列之21.ABP展现层——Javascript函数库 ABP是“ASP.N ...
- Unity3D 如何图形问题修正旋转模型已导入?
如何纠正旋转模型被导入? 一些立体艺术资源包导出其模式,以便 Z 轴向上.Unity 大多数标准的脚本中假定的三维世界 Y 轴代表了.在 Unity 比改动脚本使其契合easy得多. Z 轴朝上 ...
- seaJs组建库
seaJs组建库的使用 原文地址:seaJs学习笔记2 – seaJs组建库的使用 我觉得学习新东西并不是会使用它就够了的,会使用仅仅代表你看懂了,理解了,二不代表你深入了,彻悟了它的精髓. 所以 ...