求一个数列的最长上升序列

  动态规划法:O(n^2)

 //DP
int LIS(int a[], int n)
{
int DP[n];
int Cnt=-;
memset(DP, , sizeof(DP));
for(int i=; i<n; i++ )
{
for(int j=; j<i; j++ )
{
if( a[i]>a[j] )
{
DP[i] = max(DP[i], DP[j]+);
Cnt = max(DP[i], Cnt);//记录最长序列所含元素的个数
}
}
}
return Cnt+;//因为初始化为0,所以返回结果+1
}

贪心+二分法:O(nlogn) 

分析:要让一个序列具有最长上升子序列,其实就是保证子序列中的每个元素尽可能小,降低门槛,让后面的元素尽可能多进入该子序列

实现:定义一个最长子序列数组Array,以及当前长度Len,从头到尾维护数组a

a. a[i]>Array[i] (当前元素大于子序列结尾元素),则a[i]进入子序列:Array[++len] = a[i]

b. a[i]<=Array[i],这时对Array进行维护,把Array中比a[i]大的第一个元素替换成a[i](这样可以降低后面元素进入子序列的门槛。

c. 为了降低算法复杂度,因为Array是升序序列,所以用lower_bound查找Array中第一个大于等于a[i]的元素

 //贪心+二分
int LIS(int a[])
{
int Cnt=;
int Array[n+];
Array[] = a[];
for(int i=; i<n; i++ )
{
if( a[i]>Array[Cnt] )
Array[++Cnt]=a[i];
else
{
int Index=lower_bound(Array, Array+Cnt+, a[i])-Array;
Array[Index]=a[i];
}
}
return Cnt+;
}

求最长下降子序列:

    不需要再写LDS---直接将要求的数组倒序,倒序数组的最长上升子序列长度=原数组最长下降子序列长度。

(LIS)最长上升序列(DP+二分优化)的更多相关文章

  1. 【bzoj3173】【Tjoi2013】【最长上升子序列】treap+dp二分优化

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=61560361 向大(hei)佬(e)实力学(di ...

  2. POJ-2533最长上升子序列(DP+二分)(优化版)

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 41944   Acc ...

  3. UVa 10534 Wavio Sequence (最长递增子序列 DP 二分)

    Wavio Sequence  Wavio is a sequence of integers. It has some interesting properties. ·  Wavio is of ...

  4. hdu 1025:Constructing Roads In JGShining's Kingdom(DP + 二分优化)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  5. 最长升序列 DP

    class Solution: def lengthOfLIS(self,nums): if not nums:return 0 #边界处理 dp = [1 for _ in range(len(nu ...

  6. dp(最长升序列:二分查找时间优化nlogn)

    We are all familiar with sorting algorithms: quick sort, merge sort, heap sort, insertion sort, sele ...

  7. C - 啥~ 渣渣也想找玩数字 HDU - 2141(有序序列枚举 + 二分优化查找)

    题目描述 可爱的演演又来了,这次他想问渣渣一题... 如果给你三个数列 A[],B[],C[],请问对于给定的数字 X,能否从这三个数列中各选一个,使得A[i]+B[j]+C[k]=X? 输入 多组数 ...

  8. CODEVS3037 线段覆盖 5[序列DP 二分]

    3037 线段覆盖 5   时间限制: 3 s   空间限制: 256000 KB   题目等级 : 钻石 Diamond 题解       题目描述 Description 数轴上有n条线段,线段的 ...

  9. 动态规划模板1|LIS最长上升子序列

    LIS最长上升子序列 dp[i]保存的是当前到下标为止的最长上升子序列的长度. 模板代码: int dp[MAX_N], a[MAX_N], n; int ans = 0; // 保存最大值 for ...

随机推荐

  1. 在Centos中安装.net core SDK

    在Linux中运行.net core 项目必须要有.net core SDK 环境.之前配置过几次,但由于没有做总结.过了几天又配置的时候 感觉特别陌生,今天就记录一次.net core SDK 的安 ...

  2. MVC利用JQuery异步加载PartialView

    Javascript: $("#indexList").load('/Test/Index',{"id":"1","name&qu ...

  3. Matlab组合模式

    组合模式(Composite),将对象组合成树形结构以表示“部分-整体”的层次结构,组合模式使得用户对单个对象和组合对象的使用具有一致性.组合模式的目的是让客户端不再区分操作的是组合对象(Compos ...

  4. Exception和RuntimeException区别

    Exception:强制性要求用户必须进行处理: RuntimeException:是Exception的子类,由用户选择是否进行处理:

  5. Nginx配置SSL实现HTTPS访问

    nginx配置文件如下: server { listen 443 ssl; server_name www.domain.com; root /www/web; index index.html in ...

  6. java使用RSA与AES加密解密

    首先了解下,什么是堆成加密,什么是非对称加密? 对称加密:加密与解密的密钥是相同的,加解密速度很快,比如AES 非对称加密:加密与解密的秘钥是不同的,速度较慢,比如RSA 先看代码(先会用在研究) 相 ...

  7. UBOOT2016.05 看门狗

    硬件平台 AM335X UBOOT  2016.05 在UBOOT中关看门狗,需要修改屏蔽这两处代码 init_sequence_r->board_init->hw_watchdog_in ...

  8. 使用flannel+canal实现k8s的NetworkPolicy

    目录 1.NetworkPolicy概述 2.NetworkPolicy策略模型 3.NetworkPolicy默认策略 4.NetworkPolicy的实现 5.使用flannel+canal实现k ...

  9. css3卡片阴影效果

    1.css3阴影用到的知识点:阴影box-shadow和插入:after before HTML部分: <!DOCTYPE html> <html> <head> ...

  10. 使用Zookeeper实现负载均衡原理

    思路 使用Zookeeper实现负载均衡原理,服务器端将启动的服务注册到,zk注册中心上,采用临时节点.客户端从zk节点上获取最新服务节点信息,本地使用负载均衡算法,随机分配服务器. 创建项目工程 M ...