题目

​ 对一个二分图的边染色,满足有相同端点的边的颜色一定不同;

​ 设最优染色为\(C\) ,你的染色为\(X\),只需要满足$ X \le 2^ {\lceil log \ C \rceil }$

​ \(n_1,n_2 \le 10^6 \ , \ m \le 5 \times 10^5\)

题解

  • 这题由于没有很好地分析条件,只写了一个\(n m \sqrt m\) 的二分图匹配暴力

  • 首先答案应该是\(max \ deg_i\)

    证明:

    显然\(C \ge deg_m\)

    设二分图的两部为\(X\)和\(Y\),\(deg_m = max \ deg_i\)

    考虑选出\(X\)部的\(deg_i = deg_m\)的点,在\(Y\)部去找到一个完备匹配:

    利用霍尔定理,如果不满足,一定存在\(X\)选了\(x\)个\(deg_i = deg_m\) 的点,但是在\(Y\)和它们连通的点只有\(y\)个\((y \lt x)\),根据鸽巢原理,这\(y\)个点之中一定存在有\(deg_j \ge \lceil \frac{x \times deg_m}{y}\rceil \gt deg_m\) ,矛盾

    所以只考虑\(deg_m\)的点,\(X\)一定有一个完配\(M_x\),\(Y\)一定有一个完配\(M_y\)

    考虑$M_x \cup M_y $ 形成的若干个连通块,由于所有点的度数<=2,那么一个连通块只能是:

    1. $M_x \cap M_y $ 的一条边

    2. 环 (每个点都满足\(deg_i =deg_m\))

    3. 一条简单路径(只有末尾的某个端点不满足\(deg \neq deg_m\))

      后两者显然都可以调整到满足所有的\(deg_i=deg_m\)的点都被选入匹配

    所以一次匹配\(deg_m\)至少-1,重复这样的匹配,即\(C \le deg_m\) ,证毕

  • 题意启示我们去二分,可以补出两个虚点使得左右的度数都为偶数

  • 做欧拉回路对边染不同的色就可以每次使得\(deg_m\)折半

    #include<bits/stdc++.h>
    
    using namespace std;
    
    const int N=2000010;
    int n1,n2,n,m,hd[N],o,now,d[N],vis[N],col[N],C;
    struct edge{int u,v,w;}e[N]; char gc(){
    static char*p1,*p2,s[1000000];
    if(p1==p2)p2=(p1=s)+fread(s,1,1000000,stdin);
    return(p1==p2)?EOF:*p1++;
    }
    int rd(){
    int x=0;char c=gc();
    while(c<'0'||c>'9')c=gc();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+c-'0',c=gc();
    return x;
    } struct Edge{int v,nt,w;}E[N<<1];
    void adde(int u,int v,int w){
    vis[w]=0;
    E[o]=(Edge){v,hd[u],w};hd[u]=o++;
    E[o]=(Edge){u,hd[v],w};hd[v]=o++;
    d[u]++;d[v]++;
    } void dfs(int u){
    for(int&i=hd[u];i;i=E[i].nt){
    if(vis[E[i].w])continue;
    int tmp=E[i].w;
    vis[tmp]=1;
    dfs(E[i].v);
    now^=1;vis[tmp]=now;
    }
    } void solve(int l,int r){
    o=1;for(int i=l;i<=r;++i)adde(e[i].u,e[i].v,i);
    int fg=0,cnt=m;
    d[n+1]=d[n+2]=0;
    for(int i=l;i<=r;++i){
    int u=e[i].u,v=e[i].v;
    if(d[u]>1||d[v]>1)fg=1;
    if(d[u]&1)adde(u,n+1,++cnt);
    if(d[v]&1)adde(v,n+2,++cnt);
    d[u]=d[v]=0;
    }
    if(d[n+1]&1)adde(n+1,n+2,++cnt);
    d[n+1]=d[n+2]=0;
    if(!fg){
    ++C;hd[n+1]=hd[n+2]=0;
    for(int i=l;i<=r;++i){
    col[e[i].w]=C;
    hd[e[i].u]=hd[e[i].v]=0;
    }
    return ;
    }
    now=2;
    for(int i=l;i<=r;++i)if(!vis[i]){
    dfs(e[i].u);
    } static edge tmp[N];int p1=l,p2=0,mid;
    for(int i=l;i<=r;++i)if(vis[i]&1)e[p1++]=e[i];else tmp[++p2]=e[i];
    mid=p1;for(int i=1;i<=p2;++i)e[p1++]=tmp[i]; solve(l,mid-1);
    solve(mid,r);
    } int main(){
    freopen("color.in","r",stdin);
    freopen("color.out","w",stdout);
    n1=rd();n2=rd();m=rd();
    for(int i=1;i<=m;++i){
    int u=rd(),v=rd();
    e[i]=(edge){u,v+n1,i};
    }
    n=n1+n2;
    solve(1,m);
    printf("%d\n",C);
    for(int i=1;i<=m;++i)printf("%d\n",col[i]);
    return 0;
    }

【JZOJ6206】【20190610】二分图边染色的更多相关文章

  1. 二分图点染色 BestCoder 1st Anniversary($) 1004 Bipartite Graph

    题目传送门 /* 二分图点染色:这题就是将点分成两个集合就可以了,点染色用dfs做, 剩下的点放到点少的集合里去 官方解答:首先二分图可以分成两类点X和Y, 完全二分图的边数就是|X|*|Y|.我们的 ...

  2. hdu 5285 二分图黑白染色

    题意:给出 n 个人,以及 m 对互不认识的关系,剩余的人都互相认识,要将所有人分成两组,组内不能有互不认识的人,要求每组至少有一人,并且第一组人数尽量多,问两组人数或不可能时单独输出 BC 48 场 ...

  3. UVA - 10004 Bicoloring(判断二分图——交叉染色法 / 带权并查集)

    d.给定一个图,判断是不是二分图. s.可以交叉染色,就是二分图:否则,不是. 另外,此题中的图是强连通图,即任意两点可达,从而dfs方法从一个点出发就能遍历整个图了. 如果不能保证从一个点出发可以遍 ...

  4. 2019 ACM/ICPC Asia Regional shanxia D Miku and Generals (二分图黑白染色+01背包)

    Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...

  5. cf 557D 二分图黑白染色

    题意:给出一个 n 点 m 边的图,问最少加多少边使其能够存在奇环,加最少边的情况数有多少种 奇环和偶环其实就是二分图的性质:二分图不存在奇环,所以只要判断这张图是否是二分图就行了: 如果本身就不是二 ...

  6. cojs 二分图计数问题1-3 题解报告

    OwO 良心的FFT练手题,包含了所有的多项式基本运算呢 其中一部分解法参考了myy的uoj的blog 二分图计数 1: 实际是求所有图的二分图染色方案和 我们不妨枚举这个图中有多少个黑点 在n个点中 ...

  7. 3 Steps(二分图)

    C - 3 Steps Time limit : 2sec / Memory limit : 256MB Score : 500 points Problem Statement Rng has a ...

  8. 虚拟化构建二分图(BZOJ2080 题解+浅谈几道双栈排序思想的题)

    虚拟化构建二分图 ------BZOJ2080 题解+浅谈几道双栈排序思想的题 本题的题解在最下面↓↓↓ 不得不说,第一次接触类似于双栈排序的这种题,是在BZOJ的五月月赛上. [BZOJ4881][ ...

  9. [POJ2942]Knights of the Round Table(点双+二分图判定——染色法)

    建补图,是两个不仇恨的骑士连边,如果有环,则可以凑成一桌和谐的打麻将 不能直接缩点,因为直接缩点求的是连通分量,点双缩点只是把环缩起来 普通缩点                             ...

随机推荐

  1. 阿里云负载均衡SLB上用免费的Let's Encrypt的SSL证书

    Let's Encrypt是很火的一个免费SSL证书发行项目,自动化发行证书,证书有90天的有效期.Let's Encrypt已经发布了工具certbot,用此工具生成证书.证书续期非常简单. 以下是 ...

  2. [HNOI2012]矿场搭建 (点双连通)

    题目 [HNOI2012]矿场搭建 解析 这个题做的我十分自闭.. 没看出这个是个点双,然后一晚上+半上午.. 一看肯定和割点有关,我们找到所有的点双,会发现有这么几种情况 连通块中一个割点也没有,这 ...

  3. 2019-07-25 php错误级别及设置方法

    在php的开发过程里,我们总是会有一系列的错误警告,这些错误警告在我们开发的过程中是十分需要的,因为它能够提示我们在哪里出现了错误,以便修改和维护.但在网站开发结束投入使用时,这些报错我们就要尽量避免 ...

  4. Commander基本使用

    随着NodeJs的不断发展,对于前端来说要做的东西也就更多,Vue脚手架React脚手架等等等一系列的东西都脱颖而出,进入到人们的视野当中,对于这些脚手架工具来讲也只是停留在应用阶段,从来没有想过脚手 ...

  5. js事件(十二)

    一.事件三要素1.事件目标[谁触发的该事件(引起该事件触发的源头:target)]2.事件处理程序[处理相应事件的函数]3.事件对象[触发事件产生的携带事件信息的对象] 二.事件流[从页面中接受事件的 ...

  6. honeyd使用

    honeyd可以同时模仿上千个不同的计算机 官网 honeyd-1.5c.tar.gz:http://www.honeyd.org 依赖包 libevent-1.3a.tar.gz:http://li ...

  7. 升级tinyhttpd-0.1.0,让其支持网页显示图像

    tinyhttpd是学习http协议非常好的工具,但是由于其过于简单,不支持在网页上显示图片,所以我改了一些代码,让tinyhttpd可以现实图像,供新手一起学习和熟悉http协议,ubuntu14. ...

  8. Swagger Liunx环境搭建(亲测百分百可用)

    一.安装nodejs 下载编译好的nodejs安装包,下载地址: https://nodejs.org/dist/v10.10.0/ (作者下载的10.10.0,可根据自己需要下载不同版本) 将下载好 ...

  9. 爬取网易云音乐歌手和id

    pip install lxml csv requests from lxml import etree from time import sleep import csv import reques ...

  10. Gitlab创建一个项目(二)创建新用户以及分配项目

    Gitlab创建一个项目(一) 1.进入gitlab控制台 2.点击“新建用户” 3.点击“Edit”,创建初始密码 4.分配项目,首页进入项目 5.进入Members菜单 6.选择用户 7.赋予权限 ...