1、如果你使用root用户进行安装。 vi /etc/profile 即可 系统变量

2、如果你使用普通用户进行安装。 vi ~/.bashrc 用户变量

export HADOOP_HOME=/export/servers/hadoop-2.8.5

export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:

同步配置文件

[root@jiang01 servers]# vi /etc/profile

[root@jiang01 servers]#

[root@jiang01 servers]# xrsync.sh /etc/profile

=========== jiang02 : /etc/profile ===========

命令执行成功

=========== jiang03 : /etc/profile ===========

命令执行成功

[root@jiang01 servers]#

刷新配置各个机器配置:

source /etc/profile

修改下面各个配置文件:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<!-- 指定hdfs的nameservice为ns1 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://myha01/</value>
</property>
<!-- 指定hadoop临时目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/export/servers/hadoop-2.8./hadoopDatas/tempDatas</value>
</property>
<!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>jiang01:,jiang02:,jiang03:</value>
</property>
</configuration>

core-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>myha01</value>
</property>
<!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.myha01</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.myha01.nn1</name>
<value>jiang01:</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.myha01.nn1</name>
<value>jiang01:</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.myha01.nn2</name>
<value>jiang02:</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.myha01.nn2</name>
<value>jiang02:</value>
</property>
<!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://jiang01:8485;jiang02:8485;jiang03:8485/myha01</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/opt/hadoop-2.8./journal</value>
</property>
<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.myha01</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制 -->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<!-- 使用隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_dsa</value>
</property>
</configuration>

hdfs-site.xml

<?xml version="1.0"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<configuration>
<!-- Site specific YARN configuration properties -->
<!-- 开启RM高可靠 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>jiang02</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>jiang03</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>jiang01:,jiang02:,jiang03:</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>

yarn-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>

mapred-site.xml

[root@jiang01 servers]#  hadoop version
Hadoop 2.8.
Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r 0b8464d75227fcee2c6e7f2410377b3d53d3d5f8
Compiled by jdu on --10T03:32Z
Compiled with protoc 2.5.
From source with checksum 9942ca5c745417c14e318835f420733
This command was run using /export/servers/hadoop-2.8./share/hadoop/common/hadoop-common-2.8..jar
[root@jiang01 servers]#

查看hadoop版本

启动zk

[root@jiang01 servers]#
[root@jiang01 servers]# xcall.sh jps -l
============= jiang01 : jps -l ============
org.apache.zookeeper.server.quorum.QuorumPeerMain
sun.tools.jps.Jps
命令执行成功
============= jiang02 : jps -l ============
sun.tools.jps.Jps
org.apache.zookeeper.server.quorum.QuorumPeerMain
命令执行成功
============= jiang03 : jps -l ============
org.apache.zookeeper.server.quorum.QuorumPeerMain
sun.tools.jps.Jps
命令执行成功
[root@jiang01 servers]# xcall.sh zkServer.sh status
============= jiang01 : zkServer.sh status ============
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4./bin/../conf/zoo.cfg
Mode: follower
命令执行成功
============= jiang02 : zkServer.sh status ============
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4./bin/../conf/zoo.cfg
Mode: leader
命令执行成功
============= jiang03 : zkServer.sh status ============
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4./bin/../conf/zoo.cfg
Mode: follower
命令执行成功
[root@jiang01 servers]#

启动zk

在你配置的各个journalnode节点启动该进程

[root@jiang01 servers]#
[root@jiang01 servers]# xcall.sh hadoop-daemon.sh start journalnode
============= jiang01 : hadoop-daemon.sh start journalnode ============
starting journalnode, logging to /export/servers/hadoop-2.8./logs/hadoop-root-journalnode-jiang01.out
命令执行成功
============= jiang02 : hadoop-daemon.sh start journalnode ============
starting journalnode, logging to /export/servers/hadoop-2.8./logs/hadoop-root-journalnode-jiang02.out
命令执行成功
============= jiang03 : hadoop-daemon.sh start journalnode ============
starting journalnode, logging to /export/servers/hadoop-2.8./logs/hadoop-root-journalnode-jiang03.out
命令执行成功
[root@jiang01 servers]#

启动journalnode

先选取一个namenode(jiang01)节点进行格式化

[root@jiang01 servers]# hadoop namenode -format

格式化zkfc,只能在nameonde节点进行

主节点上面启动 dfs文件系统:

[root@jiang01 dfs]# start-dfs.sh

jiang002启动yarm

[root@jiang02 mapreduce]# start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /export/servers/hadoop-2.8./logs/yarn-root-resourcemanager-jiang02.out
jiang03: starting nodemanager, logging to /export/servers/hadoop-2.8./logs/yarn-root-nodemanager-jiang03.out
jiang01: starting nodemanager, logging to /export/servers/hadoop-2.8./logs/yarn-root-nodemanager-jiang01.out
jiang02: starting nodemanager, logging to /export/servers/hadoop-2.8./logs/yarn-root-nodemanager-jiang02.out
[root@jiang02 mapreduce]#

jiang03启动:resourcemanager

[root@jiang03 hadoopDatas]#  yarn-daemon.sh start resourcemanager
starting resourcemanager, logging to /export/servers/hadoop-2.8./logs/yarn-root-resourcemanager-jiang03.out

hadoop wordcount程序启动:

1  cd /export/servers/hadoop-2.8.5/share/hadoop/mapreduce/

2 生成数据文件:

touch word.txt
echo "hello world" >> word.txt
echo "hello hadoop" >> word.txt
echo "hello hive" >> word.txt

3 创建hadoop 文件目录

hdfs dfs -mkdir -p /work/data/input

4 向hadoop上传数据文件

hdfs dfs -put ./word.txt /work/data/input

5 计算例子

hadoop jar hadoop-mapreduce-examples-2.8..jar wordcount /work/data/input /work/data/output

6 查看结果:

[root@jiang01 mapreduce]# hadoop jar hadoop-mapreduce-examples-2.8..jar wordcount /work/data/input /work/data/output
// :: INFO input.FileInputFormat: Total input files to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1570635804389_0001
// :: INFO impl.YarnClientImpl: Submitted application application_1570635804389_0001
// :: INFO mapreduce.Job: The url to track the job: http://jiang02:8088/proxy/application_1570635804389_0001/
// :: INFO mapreduce.Job: Running job: job_1570635804389_0001
// :: INFO mapreduce.Job: Job job_1570635804389_0001 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1570635804389_0001 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total time spent by all reduce tasks (ms)=
Total vcore-milliseconds taken by all map tasks=
Total vcore-milliseconds taken by all reduce tasks=
Total megabyte-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all reduce tasks=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=

大数据集群环境搭建之一 hadoop-ha高可用安装的更多相关文章

  1. 大数据集群环境搭建之一 Centos基本环境准备

    首先需要准备的软件都有:Centos系统.SecureCRT 8.5.VMware Workstation Pro.jdk-8u172-linux-x64.tar.gz基本上这个软件就是今天的战场. ...

  2. Cloudera Manager大数据集群环境搭建

    笔者安装CDH集群是参照官方文档:https://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_install_path_ ...

  3. 【Hadoop离线基础总结】大数据集群环境准备

    大数据集群环境准备 三台虚拟机关闭防火墙 centOS 7 service firewalld stop ->关闭防火墙 chkconfig firewalld off ->开机关闭防火墙 ...

  4. 全网最详细的大数据集群环境下多个不同版本的Cloudera Hue之间的界面对比(图文详解)

    不多说,直接上干货! 为什么要写这么一篇博文呢? 是因为啊,对于Hue不同版本之间,其实,差异还是相对来说有点大的,具体,大家在使用的时候亲身体会就知道了,比如一些提示和界面. 安装Hue后的一些功能 ...

  5. Hadoop HA高可用集群搭建(Hadoop+Zookeeper+HBase)

    声明:作者原创,转载注明出处. 作者:帅气陈吃苹果 一.服务器环境 主机名 IP 用户名 密码 安装目录 master188 192.168.29.188 hadoop hadoop /home/ha ...

  6. 全网最详细的大数据集群环境下如何正确安装并配置多个不同版本的Cloudera Hue(图文详解)

    不多说,直接上干货! 为什么要写这么一篇博文呢? 是因为啊,对于Hue不同版本之间,其实,差异还是相对来说有点大的,具体,大家在使用的时候亲身体会就知道了,比如一些提示和界面. 全网最详细的大数据集群 ...

  7. CDH版本大数据集群下搭建的Hue详细启动步骤(图文详解)

    关于安装请见 CDH版本大数据集群下搭建Hue(hadoop-2.6.0-cdh5.5.4.gz + hue-3.9.0-cdh5.5.4.tar.gz)(博主推荐) Hue的启动 也就是说,你Hue ...

  8. 大数据集群环境 zookeeper集群环境安装

    大数据集群环境 zookeeper集群环境准备 zookeeper集群安装脚本,如果安装需要保持zookeeper保持相同目录,并且有可执行权限,需要准备如下 编写脚本: vi zkInstall.s ...

  9. linux -- 基于zookeeper搭建yarn的HA高可用集群

    linux -- 基于zookeeper搭建yarn的HA高可用集群 实现方式:配置yarn-site.xml配置文件 <configuration> <property> & ...

随机推荐

  1. 开发中常用linux命令

    1.创建目录mkdir 创建目录命令,常用的参数-p,递归创建目录 [root@web01 ~]# mkdir /data [root@web01 ~]# mkdir /data/a/b mkdir: ...

  2. vue bootstrap中modal对话框不显示遮挡打不开

    使用Vue bootstrap时,点击modal却不能弹出来,被隐藏遮挡无法显示,参考下面的这个博客的说明解决了这个问题: Heap Stack Blog(pingbook.top)Vue boots ...

  3. Java 解压 zip 文件

    代码如下 package test_java; import java.io.File; import java.io.FileOutputStream; import java.io.IOExcep ...

  4. Hadoop集群上搭建Ranger

    There are two types of people in the world. I hate both of them. Hadoop集群上搭建Ranger 在搭建Ranger工程之前,需要完 ...

  5. Java实现AES加密(window机器和linux机器) 注意window机器 和linux机器算法稍有不同

    一)什么是AES? 高级加密标准(英语:Advanced Encryption Standard,缩写:AES),是一种区块加密标准.这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用. ...

  6. [ARM-Linux]Linux-MATLAB安装

    说明 网上关于caffe的安装教程非常多,但是关于每一步是否操作成功,出现了什么样的错误又该如何处理没有给出说明.因为大家的操作系统的环境千差万别,按照博客中的教程一步步的安装,最后可能失败--这是很 ...

  7. Typescript 学习 - 类

    class class 并不是一种新的数据结构,只是在函数原型基础上的语法糖 class People { hand: number; constructor(hand: number) { this ...

  8. flume安装使用+根据数据源分类

    安装搭建: 1)解压下载的flume(安装jdk1.6及其以上) 2)在conf文件夹里面建立example.conf文件 #example.conf:单节点Flume配置 #命名Agent a1的组 ...

  9. 剑指阿里P6,25岁小伙怒斩三面,喜提offer(Java研发岗)

    本文提供者:洎扰の庸人 微信公众号:慕容千语的架构笔记.欢迎关注一起进步. 进阿里一直都是身为程序员的我,最初的梦想,经过去年面试蚂蚁金服失败的挫折后,今年再次鼓起勇气投简历,经过一位前辈的内推省了很 ...

  10. 第十二节:Asp.Net Core 之分布式缓存(SQLServer和Redis)

    一. 整体说明 1. 说明 分布式缓存通常是指在多个应用程序服务器的架构下,作为他们共享的外部服务共享缓存,常用的有SQLServer.Redis.NCache.     特别说明一下:这里的分布式是 ...