1、如果你使用root用户进行安装。 vi /etc/profile 即可 系统变量

2、如果你使用普通用户进行安装。 vi ~/.bashrc 用户变量

export HADOOP_HOME=/export/servers/hadoop-2.8.5

export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:

同步配置文件

[root@jiang01 servers]# vi /etc/profile

[root@jiang01 servers]#

[root@jiang01 servers]# xrsync.sh /etc/profile

=========== jiang02 : /etc/profile ===========

命令执行成功

=========== jiang03 : /etc/profile ===========

命令执行成功

[root@jiang01 servers]#

刷新配置各个机器配置:

source /etc/profile

修改下面各个配置文件:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<!-- 指定hdfs的nameservice为ns1 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://myha01/</value>
</property>
<!-- 指定hadoop临时目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/export/servers/hadoop-2.8./hadoopDatas/tempDatas</value>
</property>
<!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>jiang01:,jiang02:,jiang03:</value>
</property>
</configuration>

core-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>myha01</value>
</property>
<!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.myha01</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.myha01.nn1</name>
<value>jiang01:</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.myha01.nn1</name>
<value>jiang01:</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.myha01.nn2</name>
<value>jiang02:</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.myha01.nn2</name>
<value>jiang02:</value>
</property>
<!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://jiang01:8485;jiang02:8485;jiang03:8485/myha01</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/opt/hadoop-2.8./journal</value>
</property>
<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.myha01</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制 -->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<!-- 使用隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_dsa</value>
</property>
</configuration>

hdfs-site.xml

<?xml version="1.0"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<configuration>
<!-- Site specific YARN configuration properties -->
<!-- 开启RM高可靠 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>jiang02</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>jiang03</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>jiang01:,jiang02:,jiang03:</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>

yarn-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>

mapred-site.xml

[root@jiang01 servers]#  hadoop version
Hadoop 2.8.
Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r 0b8464d75227fcee2c6e7f2410377b3d53d3d5f8
Compiled by jdu on --10T03:32Z
Compiled with protoc 2.5.
From source with checksum 9942ca5c745417c14e318835f420733
This command was run using /export/servers/hadoop-2.8./share/hadoop/common/hadoop-common-2.8..jar
[root@jiang01 servers]#

查看hadoop版本

启动zk

[root@jiang01 servers]#
[root@jiang01 servers]# xcall.sh jps -l
============= jiang01 : jps -l ============
org.apache.zookeeper.server.quorum.QuorumPeerMain
sun.tools.jps.Jps
命令执行成功
============= jiang02 : jps -l ============
sun.tools.jps.Jps
org.apache.zookeeper.server.quorum.QuorumPeerMain
命令执行成功
============= jiang03 : jps -l ============
org.apache.zookeeper.server.quorum.QuorumPeerMain
sun.tools.jps.Jps
命令执行成功
[root@jiang01 servers]# xcall.sh zkServer.sh status
============= jiang01 : zkServer.sh status ============
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4./bin/../conf/zoo.cfg
Mode: follower
命令执行成功
============= jiang02 : zkServer.sh status ============
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4./bin/../conf/zoo.cfg
Mode: leader
命令执行成功
============= jiang03 : zkServer.sh status ============
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4./bin/../conf/zoo.cfg
Mode: follower
命令执行成功
[root@jiang01 servers]#

启动zk

在你配置的各个journalnode节点启动该进程

[root@jiang01 servers]#
[root@jiang01 servers]# xcall.sh hadoop-daemon.sh start journalnode
============= jiang01 : hadoop-daemon.sh start journalnode ============
starting journalnode, logging to /export/servers/hadoop-2.8./logs/hadoop-root-journalnode-jiang01.out
命令执行成功
============= jiang02 : hadoop-daemon.sh start journalnode ============
starting journalnode, logging to /export/servers/hadoop-2.8./logs/hadoop-root-journalnode-jiang02.out
命令执行成功
============= jiang03 : hadoop-daemon.sh start journalnode ============
starting journalnode, logging to /export/servers/hadoop-2.8./logs/hadoop-root-journalnode-jiang03.out
命令执行成功
[root@jiang01 servers]#

启动journalnode

先选取一个namenode(jiang01)节点进行格式化

[root@jiang01 servers]# hadoop namenode -format

格式化zkfc,只能在nameonde节点进行

主节点上面启动 dfs文件系统:

[root@jiang01 dfs]# start-dfs.sh

jiang002启动yarm

[root@jiang02 mapreduce]# start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /export/servers/hadoop-2.8./logs/yarn-root-resourcemanager-jiang02.out
jiang03: starting nodemanager, logging to /export/servers/hadoop-2.8./logs/yarn-root-nodemanager-jiang03.out
jiang01: starting nodemanager, logging to /export/servers/hadoop-2.8./logs/yarn-root-nodemanager-jiang01.out
jiang02: starting nodemanager, logging to /export/servers/hadoop-2.8./logs/yarn-root-nodemanager-jiang02.out
[root@jiang02 mapreduce]#

jiang03启动:resourcemanager

[root@jiang03 hadoopDatas]#  yarn-daemon.sh start resourcemanager
starting resourcemanager, logging to /export/servers/hadoop-2.8./logs/yarn-root-resourcemanager-jiang03.out

hadoop wordcount程序启动:

1  cd /export/servers/hadoop-2.8.5/share/hadoop/mapreduce/

2 生成数据文件:

touch word.txt
echo "hello world" >> word.txt
echo "hello hadoop" >> word.txt
echo "hello hive" >> word.txt

3 创建hadoop 文件目录

hdfs dfs -mkdir -p /work/data/input

4 向hadoop上传数据文件

hdfs dfs -put ./word.txt /work/data/input

5 计算例子

hadoop jar hadoop-mapreduce-examples-2.8..jar wordcount /work/data/input /work/data/output

6 查看结果:

[root@jiang01 mapreduce]# hadoop jar hadoop-mapreduce-examples-2.8..jar wordcount /work/data/input /work/data/output
// :: INFO input.FileInputFormat: Total input files to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1570635804389_0001
// :: INFO impl.YarnClientImpl: Submitted application application_1570635804389_0001
// :: INFO mapreduce.Job: The url to track the job: http://jiang02:8088/proxy/application_1570635804389_0001/
// :: INFO mapreduce.Job: Running job: job_1570635804389_0001
// :: INFO mapreduce.Job: Job job_1570635804389_0001 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1570635804389_0001 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total time spent by all reduce tasks (ms)=
Total vcore-milliseconds taken by all map tasks=
Total vcore-milliseconds taken by all reduce tasks=
Total megabyte-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all reduce tasks=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=

大数据集群环境搭建之一 hadoop-ha高可用安装的更多相关文章

  1. 大数据集群环境搭建之一 Centos基本环境准备

    首先需要准备的软件都有:Centos系统.SecureCRT 8.5.VMware Workstation Pro.jdk-8u172-linux-x64.tar.gz基本上这个软件就是今天的战场. ...

  2. Cloudera Manager大数据集群环境搭建

    笔者安装CDH集群是参照官方文档:https://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_install_path_ ...

  3. 【Hadoop离线基础总结】大数据集群环境准备

    大数据集群环境准备 三台虚拟机关闭防火墙 centOS 7 service firewalld stop ->关闭防火墙 chkconfig firewalld off ->开机关闭防火墙 ...

  4. 全网最详细的大数据集群环境下多个不同版本的Cloudera Hue之间的界面对比(图文详解)

    不多说,直接上干货! 为什么要写这么一篇博文呢? 是因为啊,对于Hue不同版本之间,其实,差异还是相对来说有点大的,具体,大家在使用的时候亲身体会就知道了,比如一些提示和界面. 安装Hue后的一些功能 ...

  5. Hadoop HA高可用集群搭建(Hadoop+Zookeeper+HBase)

    声明:作者原创,转载注明出处. 作者:帅气陈吃苹果 一.服务器环境 主机名 IP 用户名 密码 安装目录 master188 192.168.29.188 hadoop hadoop /home/ha ...

  6. 全网最详细的大数据集群环境下如何正确安装并配置多个不同版本的Cloudera Hue(图文详解)

    不多说,直接上干货! 为什么要写这么一篇博文呢? 是因为啊,对于Hue不同版本之间,其实,差异还是相对来说有点大的,具体,大家在使用的时候亲身体会就知道了,比如一些提示和界面. 全网最详细的大数据集群 ...

  7. CDH版本大数据集群下搭建的Hue详细启动步骤(图文详解)

    关于安装请见 CDH版本大数据集群下搭建Hue(hadoop-2.6.0-cdh5.5.4.gz + hue-3.9.0-cdh5.5.4.tar.gz)(博主推荐) Hue的启动 也就是说,你Hue ...

  8. 大数据集群环境 zookeeper集群环境安装

    大数据集群环境 zookeeper集群环境准备 zookeeper集群安装脚本,如果安装需要保持zookeeper保持相同目录,并且有可执行权限,需要准备如下 编写脚本: vi zkInstall.s ...

  9. linux -- 基于zookeeper搭建yarn的HA高可用集群

    linux -- 基于zookeeper搭建yarn的HA高可用集群 实现方式:配置yarn-site.xml配置文件 <configuration> <property> & ...

随机推荐

  1. QHBoxLayout 、QFormLayout 遍历子部件,查找QLineEdit控件

    布局如下: QLineEdit * edit1 = new QLineEdit; QLineEdit * edit2 = new QLineEdit; QLineEdit * edit3 = new ...

  2. [Gamma]阶段发布说明

    小小易校园微信小程序发布说明 第二版小小易校园小程序发布啦~ 打开微信,点击右上角➕,选择扫一扫,扫描以下二维码即可进入小程序: 版本功能: 上一版功能请参见[Beta阶段]发布说明. 当前版本的更新 ...

  3. 本周使用angular7所遇到的一些问题

    前言 本周在使用angular7所遇到的一些问题,学习是不断的循序渐进的过程,在本周完成对应的工作后,也要抽出一些时间用来学习,比较我们公司10点上班,我一般9点就会到,在这一个小时内看看博客,写写笔 ...

  4. 029 ElasticSearch----全文检索技术04---基础知识详解02-查询

    1.查询 (1)基本查询 基本语法: GET /索引库名/_search { "query":{ "查询类型":{ "查询条件":" ...

  5. [转帖]PostgreSQL 参数调整(性能优化)

    PostgreSQL 参数调整(性能优化) https://www.cnblogs.com/VicLiu/p/11854730.html 知道一个 shared_pool 文章写的挺好的 还没仔细看 ...

  6. AntDesign vue学习笔记(四)使用组件切换

    同样实现上一篇功能, 改为使用组件切换,实现方法如下 1.修改MainFrm中的<router-view/>如下代码 2.注册局部组件 export default { name: 'Ma ...

  7. Sitecore 8.2 工作流程

    假设您的新Sitecore项目的所有开发都已完成.现在的下一步是在网站上填写内容并准备上线.客户通知您他们希望使用专门的网站管理员团队负责整个内容管理流程,并要求您为他们准备实例以便能够执行此操作. ...

  8. 案例:使用logstash收集游戏服务器日志,输出到kafka消息队列中,然后存入ES

    gamelogs2kafka.conf input { file { codec => plain { charset => "UTF-8" } path => ...

  9. 一段代码看 Java 引用类型

    Java 中的操作数(不知道叫什么,相对于 bytecode 而言,类似 CPU 的操作码和操作数)分为值类型和引用类型: 值类型就是直接存储最终数值的,如 char, int, float, dou ...

  10. syntax error near unexpected token 脚本报错误解决

    hadoop老师给了一个shell文件,在windows里面瞅了一眼然后在ubuntu环境下运行就报错了.看了一些博客,用vim -b filename查看的时候发现每一行的末尾都多了一个^M.... ...