1、如果你使用root用户进行安装。 vi /etc/profile 即可 系统变量

2、如果你使用普通用户进行安装。 vi ~/.bashrc 用户变量

export HADOOP_HOME=/export/servers/hadoop-2.8.5

export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:

同步配置文件

[root@jiang01 servers]# vi /etc/profile

[root@jiang01 servers]#

[root@jiang01 servers]# xrsync.sh /etc/profile

=========== jiang02 : /etc/profile ===========

命令执行成功

=========== jiang03 : /etc/profile ===========

命令执行成功

[root@jiang01 servers]#

刷新配置各个机器配置:

source /etc/profile

修改下面各个配置文件:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<!-- 指定hdfs的nameservice为ns1 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://myha01/</value>
</property>
<!-- 指定hadoop临时目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/export/servers/hadoop-2.8./hadoopDatas/tempDatas</value>
</property>
<!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>jiang01:,jiang02:,jiang03:</value>
</property>
</configuration>

core-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>myha01</value>
</property>
<!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.myha01</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.myha01.nn1</name>
<value>jiang01:</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.myha01.nn1</name>
<value>jiang01:</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.myha01.nn2</name>
<value>jiang02:</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.myha01.nn2</name>
<value>jiang02:</value>
</property>
<!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://jiang01:8485;jiang02:8485;jiang03:8485/myha01</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/opt/hadoop-2.8./journal</value>
</property>
<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.myha01</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制 -->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<!-- 使用隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_dsa</value>
</property>
</configuration>

hdfs-site.xml

<?xml version="1.0"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<configuration>
<!-- Site specific YARN configuration properties -->
<!-- 开启RM高可靠 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>jiang02</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>jiang03</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>jiang01:,jiang02:,jiang03:</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>

yarn-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>

mapred-site.xml

[root@jiang01 servers]#  hadoop version
Hadoop 2.8.
Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r 0b8464d75227fcee2c6e7f2410377b3d53d3d5f8
Compiled by jdu on --10T03:32Z
Compiled with protoc 2.5.
From source with checksum 9942ca5c745417c14e318835f420733
This command was run using /export/servers/hadoop-2.8./share/hadoop/common/hadoop-common-2.8..jar
[root@jiang01 servers]#

查看hadoop版本

启动zk

[root@jiang01 servers]#
[root@jiang01 servers]# xcall.sh jps -l
============= jiang01 : jps -l ============
org.apache.zookeeper.server.quorum.QuorumPeerMain
sun.tools.jps.Jps
命令执行成功
============= jiang02 : jps -l ============
sun.tools.jps.Jps
org.apache.zookeeper.server.quorum.QuorumPeerMain
命令执行成功
============= jiang03 : jps -l ============
org.apache.zookeeper.server.quorum.QuorumPeerMain
sun.tools.jps.Jps
命令执行成功
[root@jiang01 servers]# xcall.sh zkServer.sh status
============= jiang01 : zkServer.sh status ============
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4./bin/../conf/zoo.cfg
Mode: follower
命令执行成功
============= jiang02 : zkServer.sh status ============
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4./bin/../conf/zoo.cfg
Mode: leader
命令执行成功
============= jiang03 : zkServer.sh status ============
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4./bin/../conf/zoo.cfg
Mode: follower
命令执行成功
[root@jiang01 servers]#

启动zk

在你配置的各个journalnode节点启动该进程

[root@jiang01 servers]#
[root@jiang01 servers]# xcall.sh hadoop-daemon.sh start journalnode
============= jiang01 : hadoop-daemon.sh start journalnode ============
starting journalnode, logging to /export/servers/hadoop-2.8./logs/hadoop-root-journalnode-jiang01.out
命令执行成功
============= jiang02 : hadoop-daemon.sh start journalnode ============
starting journalnode, logging to /export/servers/hadoop-2.8./logs/hadoop-root-journalnode-jiang02.out
命令执行成功
============= jiang03 : hadoop-daemon.sh start journalnode ============
starting journalnode, logging to /export/servers/hadoop-2.8./logs/hadoop-root-journalnode-jiang03.out
命令执行成功
[root@jiang01 servers]#

启动journalnode

先选取一个namenode(jiang01)节点进行格式化

[root@jiang01 servers]# hadoop namenode -format

格式化zkfc,只能在nameonde节点进行

主节点上面启动 dfs文件系统:

[root@jiang01 dfs]# start-dfs.sh

jiang002启动yarm

[root@jiang02 mapreduce]# start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /export/servers/hadoop-2.8./logs/yarn-root-resourcemanager-jiang02.out
jiang03: starting nodemanager, logging to /export/servers/hadoop-2.8./logs/yarn-root-nodemanager-jiang03.out
jiang01: starting nodemanager, logging to /export/servers/hadoop-2.8./logs/yarn-root-nodemanager-jiang01.out
jiang02: starting nodemanager, logging to /export/servers/hadoop-2.8./logs/yarn-root-nodemanager-jiang02.out
[root@jiang02 mapreduce]#

jiang03启动:resourcemanager

[root@jiang03 hadoopDatas]#  yarn-daemon.sh start resourcemanager
starting resourcemanager, logging to /export/servers/hadoop-2.8./logs/yarn-root-resourcemanager-jiang03.out

hadoop wordcount程序启动:

1  cd /export/servers/hadoop-2.8.5/share/hadoop/mapreduce/

2 生成数据文件:

touch word.txt
echo "hello world" >> word.txt
echo "hello hadoop" >> word.txt
echo "hello hive" >> word.txt

3 创建hadoop 文件目录

hdfs dfs -mkdir -p /work/data/input

4 向hadoop上传数据文件

hdfs dfs -put ./word.txt /work/data/input

5 计算例子

hadoop jar hadoop-mapreduce-examples-2.8..jar wordcount /work/data/input /work/data/output

6 查看结果:

[root@jiang01 mapreduce]# hadoop jar hadoop-mapreduce-examples-2.8..jar wordcount /work/data/input /work/data/output
// :: INFO input.FileInputFormat: Total input files to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1570635804389_0001
// :: INFO impl.YarnClientImpl: Submitted application application_1570635804389_0001
// :: INFO mapreduce.Job: The url to track the job: http://jiang02:8088/proxy/application_1570635804389_0001/
// :: INFO mapreduce.Job: Running job: job_1570635804389_0001
// :: INFO mapreduce.Job: Job job_1570635804389_0001 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1570635804389_0001 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total time spent by all reduce tasks (ms)=
Total vcore-milliseconds taken by all map tasks=
Total vcore-milliseconds taken by all reduce tasks=
Total megabyte-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all reduce tasks=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=

大数据集群环境搭建之一 hadoop-ha高可用安装的更多相关文章

  1. 大数据集群环境搭建之一 Centos基本环境准备

    首先需要准备的软件都有:Centos系统.SecureCRT 8.5.VMware Workstation Pro.jdk-8u172-linux-x64.tar.gz基本上这个软件就是今天的战场. ...

  2. Cloudera Manager大数据集群环境搭建

    笔者安装CDH集群是参照官方文档:https://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_install_path_ ...

  3. 【Hadoop离线基础总结】大数据集群环境准备

    大数据集群环境准备 三台虚拟机关闭防火墙 centOS 7 service firewalld stop ->关闭防火墙 chkconfig firewalld off ->开机关闭防火墙 ...

  4. 全网最详细的大数据集群环境下多个不同版本的Cloudera Hue之间的界面对比(图文详解)

    不多说,直接上干货! 为什么要写这么一篇博文呢? 是因为啊,对于Hue不同版本之间,其实,差异还是相对来说有点大的,具体,大家在使用的时候亲身体会就知道了,比如一些提示和界面. 安装Hue后的一些功能 ...

  5. Hadoop HA高可用集群搭建(Hadoop+Zookeeper+HBase)

    声明:作者原创,转载注明出处. 作者:帅气陈吃苹果 一.服务器环境 主机名 IP 用户名 密码 安装目录 master188 192.168.29.188 hadoop hadoop /home/ha ...

  6. 全网最详细的大数据集群环境下如何正确安装并配置多个不同版本的Cloudera Hue(图文详解)

    不多说,直接上干货! 为什么要写这么一篇博文呢? 是因为啊,对于Hue不同版本之间,其实,差异还是相对来说有点大的,具体,大家在使用的时候亲身体会就知道了,比如一些提示和界面. 全网最详细的大数据集群 ...

  7. CDH版本大数据集群下搭建的Hue详细启动步骤(图文详解)

    关于安装请见 CDH版本大数据集群下搭建Hue(hadoop-2.6.0-cdh5.5.4.gz + hue-3.9.0-cdh5.5.4.tar.gz)(博主推荐) Hue的启动 也就是说,你Hue ...

  8. 大数据集群环境 zookeeper集群环境安装

    大数据集群环境 zookeeper集群环境准备 zookeeper集群安装脚本,如果安装需要保持zookeeper保持相同目录,并且有可执行权限,需要准备如下 编写脚本: vi zkInstall.s ...

  9. linux -- 基于zookeeper搭建yarn的HA高可用集群

    linux -- 基于zookeeper搭建yarn的HA高可用集群 实现方式:配置yarn-site.xml配置文件 <configuration> <property> & ...

随机推荐

  1. [PHP] 一个免费、开源的基于tp5+layui2.1.5开发的快速开发框架

    推荐 一个免费.开源的基于tp5+layui2.1.5开发的快速开发框架,既可以用来学习,也可以用来实际项目的快速开发: 码云下载:https://gitee.com/eduaskcms/eduask ...

  2. a标签设置水平右对齐

      1.情景展示 如上图所示,这其实是一个a标签,如何让它右对齐呢? 2.解决方案 第一步:将行内标签转化成块级元素,即display:block: 第二步:文字右对齐,即text-align:rig ...

  3. Java集合详解2:一文读懂Queue和LinkedList

    <Java集合详解系列>是我在完成夯实Java基础篇的系列博客后准备开始写的新系列. 这些文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查 ...

  4. 20190802_Nginx基础

    20190802_Nginx基础 文章主要内容: 关于中间件比较通俗易懂的解释 Nginx简述 Nginx环境配置以及安装 Nginx的目录和配置语法 Nginx日志_log_format Nginx ...

  5. cad.net vs调试问题 20190923增加默认启动注册表,20191007更新vs2019到16.3.2

    Acad2008和Acad2010需要修改安装目录下的acad.exe.config文件内容,才可以捕获断点: <configuration> <startup> <!- ...

  6. Docker安装及简单使用(Ubuntu)

    ### Ubuntu18下docker安装 * step 1: 安装必要的一些系统工具 sudo apt-get update sudo apt-get -y install apt-transpor ...

  7. @Import导入自定义选择器

    @Import导入自定义选择器 之前一篇博文:Spring中的@Import注解已经详细介绍了@Import注解,不赘述. 需求描述 通过@import注解自定义组件选择器,将满足我们自定义的规则的b ...

  8. 什么是 ZFS文件系统?ZFS概念及特点简介

    什么是 ZFS? ZFS(Zettabyte File System)是由SUN公司的Jeff Bonwick领导设计的一种基于Solaris的文件系统,最初发布于20014年9月14日. SUN被O ...

  9. Laravel文档工具

    laravel-doc ⛵laravel-doc 是一个用来生成文档,通过markdown来撰写文档,并提供web访问文档的项目 安装要求 PHP >= 7.0.0 Laravel >= ...

  10. JavaScript核心知识点

    一.JavaScript 简介 一.JavaScript语言的介绍:JavaScript是基于对象和原型的一种动态.弱类型的脚本语言 二.JavaScript语言的组成:JavaScript是由核心语 ...