storm整合kafka storm-kafka-client
pom.xml-注意jar-log4j
---------------------
<dependencies>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-kafka-client</artifactId>
<version>1.1.3</version>
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>1.1.3</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.44</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId>
<version>1.0.0</version>
<exclusions> <exclusion>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
</exclusion> <exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies> TopologyBuilder builder = new TopologyBuilder();
ByTopicRecordTranslator<String,String> brt =
new ByTopicRecordTranslator<>( (r) -> new Values(r.value(),r.topic()),new Fields("values","msg"));
KafkaSpoutConfig<String,String> ksc = KafkaSpoutConfig
//bootstrapServers 以及topic(mycall_in)
.builder("192.168.1.3:9092", "mycall_in")
//设置group.id
.setProp(ConsumerConfig.GROUP_ID_CONFIG, "skc-test")
//设置开始消费的气势位置
.setFirstPollOffsetStrategy(FirstPollOffsetStrategy.LATEST)
//设置提交消费边界的时长间隔
.setOffsetCommitPeriodMs(10_000)
//Translator
.setRecordTranslator(brt)
.build();
builder.setSpout("kafkaspout", new KafkaSpout<>(ksc), 4);
builder.setBolt("mybolt1", new MyBolt1(), 2).shuffleGrouping("kafkaspout"); //set producer properties.
Properties props = new Properties();
props.put("bootstrap.servers", "192.168.1.3:9092");
props.put("acks", "1");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); @SuppressWarnings({ "unchecked", "rawtypes" })
KafkaBolt bolt = new KafkaBolt()
.withProducerProperties(props)
.withTopicSelector(new DefaultTopicSelector("mycall_out"))
.withTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper("", "call"));
builder.setBolt("KafkaBolt", bolt, 4).fieldsGrouping("mybolt3", new Fields("call")); Config config = new Config();
config.setNumWorkers(2);
config.setNumAckers(0);
config.setDebug(false);
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("storm-kafka-clients", config, builder.createTopology());
try {
//集群运行
//StormSubmitter.submitTopology("storm-kafka-clients", config, builder.createTopology());
Thread.sleep(1000*60*30);//30m
cluster.shutdown();
} catch (Exception e) {
e.printStackTrace();
} ---
感谢阅读,需完整代码的请联系博主!
<dependency><groupId>org.apache.storm</groupId><artifactId>storm-kafka-client</artifactId><version>1.1.3</version></dependency>
storm整合kafka storm-kafka-client的更多相关文章
- Kafka+Storm写入Hbase和HDFS
1.Storm整合Kafka 使用Kafka作为数据源,起到缓冲的作用 // 配置Kafka订阅的Topic,以及zookeeper中数据节点目录和名字 String zks = KafkaPrope ...
- Flume+Kafka+Storm+Hbase+HDSF+Poi整合
Flume+Kafka+Storm+Hbase+HDSF+Poi整合 需求: 针对一个网站,我们需要根据用户的行为记录日志信息,分析对我们有用的数据. 举例:这个网站www.hongten.com(当 ...
- Flume+Kafka+Storm整合
Flume+Kafka+Storm整合 1. 需求: 有一个客户端Client可以产生日志信息,我们需要通过Flume获取日志信息,再把该日志信息放入到Kafka的一个Topic:flume-to-k ...
- Kafka+Storm+HDFS整合实践
在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了.实时应用场景可以使用Storm,它是一 ...
- [转载] Kafka+Storm+HDFS整合实践
转载自http://www.tuicool.com/articles/NzyqAn 在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统 ...
- 大数据处理框架之Strom:Flume+Kafka+Storm整合
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 apache-flume-1.6.0 ...
- Flume+Kafka+storm的连接整合
Flume-ng Flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的系统. Flume的文档可以看http://flume.apache.org/FlumeUserGuide.html ...
- 大数据学习——kafka+storm+hdfs整合
1 需求 kafka,storm,hdfs整合是流式数据常用的一套框架组合,现在 根据需求使用代码实现该需求 需求:应用所学技术实现,kafka接收随机句子,对接到storm中:使用storm集群统计 ...
- flume+kafka+storm
centos06.6+JDK1.7 flume1.4+kafka2.10+storm0.9.3 zookeeper3.4.6 集群: 192.168.80.133 x01 192.168.80.134 ...
- 大数据入门第十七天——storm上游数据源 之kafka详解(二)常用命令
一.kafka常用命令 1.创建topic bin/kafka-topics. --replication-factor --zookeeper mini1: // 如果配置了PATH可以省略相关命令 ...
随机推荐
- EasyDSS高性能流媒体服务器开发RTMP直播同步输出HLS(m3u8)录像功能实现时移回放的方案
EasyDSS商用流媒体服务器解决方案是由EasyDarwin开源团队原班人马开发的一套集流媒体点播.转码与管理.直播.录像.检索.时移回看于一体的一套完整的商用流媒体服务器解决方案,支持RTMP推流 ...
- Vue 组件封装发布到npm 报错 Uncaught TypeError: Cannot read property 'toLowerCase' of undefined
Uncaught TypeError: Cannot read property 'toLowerCase' of undefined 原因是 没有导出 export default { name:& ...
- C/C++配置
VScode 插件推荐与C/C++配置 https://www.cnblogs.com/harrypotterjackson/p/11432252.html 阅读目录 C++类 美化 git tab ...
- JS系列:编程语言
1.编程语言 html+css标记语言 js:轻量级的交互语言->全栈编程语言 - 面向对象: + C++ + JAVA + PHP + C# (.net doc) + JS - 面向过程 + ...
- [Docker] Windows 宿主环境下,共享或上传文件到容器的方法
需求如题. 解决方案1 - 挂载目录(适用于创建新的容器) 格式-v 容器目录 或 -v 本地目录:容器目录 范例Linux宿主环境下:使用镜像 nginx:latest,以后台模式启动一个容器,将容 ...
- error adding symbols:DSO missing from command line
编译时加上-lz,如果是使用eclipse,则在添加库z
- Delphi RSA签名与验签【支持SHA1WithRSA(RSA1)、SHA256WithRSA(RSA2)和MD5WithRSA签名与验签】
作者QQ:(648437169) 点击下载➨ RSA签名与验签 [delphi RSA签名与验签]支持3种方式签名与验签(SHA1WithRSA(RSA1).SHA256WithRSA(RSA2)和M ...
- SQL Server日志处理及安全访问
1.点SQL SERVER错误日志,右键,配置,限定错误日志的数目,比如6个 限制日志增长数量 2.然后运行命令: EXEC sp_cycle_errorlog ; 这个命令的作用是将当前日志归档,然 ...
- Python 基础 常用运算符
Python 基础 常用运算符 计算机可以进行的运算有很多种,可不只加减乘除这么简单,运算按种类可分为算术运算.比较运算.逻辑运算.赋值运算.成员运算.身份运算.位运算. 今天我们暂只学习 算术运算. ...
- 24H玩转 Grafana 被工程师称相当专业,如何做到?
国庆假期发生了两件小事,其一是我默默度过 35 周岁生日,其二是玩了下grafana `并在节后第一天被工程师 M 称赞:相当专业. 1.我为什么要玩 grafana 呢? 数月前我提交了一份数据后台 ...