storm整合kafka storm-kafka-client
pom.xml-注意jar-log4j
---------------------
<dependencies>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-kafka-client</artifactId>
<version>1.1.3</version>
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>1.1.3</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.44</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId>
<version>1.0.0</version>
<exclusions> <exclusion>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
</exclusion> <exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies> TopologyBuilder builder = new TopologyBuilder();
ByTopicRecordTranslator<String,String> brt =
new ByTopicRecordTranslator<>( (r) -> new Values(r.value(),r.topic()),new Fields("values","msg"));
KafkaSpoutConfig<String,String> ksc = KafkaSpoutConfig
//bootstrapServers 以及topic(mycall_in)
.builder("192.168.1.3:9092", "mycall_in")
//设置group.id
.setProp(ConsumerConfig.GROUP_ID_CONFIG, "skc-test")
//设置开始消费的气势位置
.setFirstPollOffsetStrategy(FirstPollOffsetStrategy.LATEST)
//设置提交消费边界的时长间隔
.setOffsetCommitPeriodMs(10_000)
//Translator
.setRecordTranslator(brt)
.build();
builder.setSpout("kafkaspout", new KafkaSpout<>(ksc), 4);
builder.setBolt("mybolt1", new MyBolt1(), 2).shuffleGrouping("kafkaspout"); //set producer properties.
Properties props = new Properties();
props.put("bootstrap.servers", "192.168.1.3:9092");
props.put("acks", "1");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); @SuppressWarnings({ "unchecked", "rawtypes" })
KafkaBolt bolt = new KafkaBolt()
.withProducerProperties(props)
.withTopicSelector(new DefaultTopicSelector("mycall_out"))
.withTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper("", "call"));
builder.setBolt("KafkaBolt", bolt, 4).fieldsGrouping("mybolt3", new Fields("call")); Config config = new Config();
config.setNumWorkers(2);
config.setNumAckers(0);
config.setDebug(false);
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("storm-kafka-clients", config, builder.createTopology());
try {
//集群运行
//StormSubmitter.submitTopology("storm-kafka-clients", config, builder.createTopology());
Thread.sleep(1000*60*30);//30m
cluster.shutdown();
} catch (Exception e) {
e.printStackTrace();
} ---
感谢阅读,需完整代码的请联系博主!
<dependency><groupId>org.apache.storm</groupId><artifactId>storm-kafka-client</artifactId><version>1.1.3</version></dependency>
storm整合kafka storm-kafka-client的更多相关文章
- Kafka+Storm写入Hbase和HDFS
1.Storm整合Kafka 使用Kafka作为数据源,起到缓冲的作用 // 配置Kafka订阅的Topic,以及zookeeper中数据节点目录和名字 String zks = KafkaPrope ...
- Flume+Kafka+Storm+Hbase+HDSF+Poi整合
Flume+Kafka+Storm+Hbase+HDSF+Poi整合 需求: 针对一个网站,我们需要根据用户的行为记录日志信息,分析对我们有用的数据. 举例:这个网站www.hongten.com(当 ...
- Flume+Kafka+Storm整合
Flume+Kafka+Storm整合 1. 需求: 有一个客户端Client可以产生日志信息,我们需要通过Flume获取日志信息,再把该日志信息放入到Kafka的一个Topic:flume-to-k ...
- Kafka+Storm+HDFS整合实践
在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了.实时应用场景可以使用Storm,它是一 ...
- [转载] Kafka+Storm+HDFS整合实践
转载自http://www.tuicool.com/articles/NzyqAn 在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统 ...
- 大数据处理框架之Strom:Flume+Kafka+Storm整合
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 apache-flume-1.6.0 ...
- Flume+Kafka+storm的连接整合
Flume-ng Flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的系统. Flume的文档可以看http://flume.apache.org/FlumeUserGuide.html ...
- 大数据学习——kafka+storm+hdfs整合
1 需求 kafka,storm,hdfs整合是流式数据常用的一套框架组合,现在 根据需求使用代码实现该需求 需求:应用所学技术实现,kafka接收随机句子,对接到storm中:使用storm集群统计 ...
- flume+kafka+storm
centos06.6+JDK1.7 flume1.4+kafka2.10+storm0.9.3 zookeeper3.4.6 集群: 192.168.80.133 x01 192.168.80.134 ...
- 大数据入门第十七天——storm上游数据源 之kafka详解(二)常用命令
一.kafka常用命令 1.创建topic bin/kafka-topics. --replication-factor --zookeeper mini1: // 如果配置了PATH可以省略相关命令 ...
随机推荐
- Nodejs接收图片base64格式保存为文件
base64的形式为“....”:当接收到上边的内容后,需要将data ...
- mysql数据库事务类型
出自:https://blog.csdn.net/u014439239/article/details/78086729 数据库事务有不同的隔离级别,不同的隔离级别对锁的使用是不同的,锁的应用最终导致 ...
- POJ-图论-最短路模板(邻接矩阵)
POJ-图论-最短路模板 一.Floyd算法 刚读入数据时,G为读入的图邻接矩阵,更新后,G[i][j]表示结点i到结点j的最短路径长度 int G[N][N];//二维数组,其初始值即为该图的邻接矩 ...
- Java数组操作类
最近又重新在看慕课网的数据结构,然后把示例代码整理一下. public class Array<E> { private E[] data; private int count = 0; ...
- ElasticSearch中"distinct","count"和"group by"的实现
最近在业务中需要使用ES来进行数据查询,在某些场景下需要对数据进行去重,以及去重后的统计.为了方便大家理解,特意从SQL角度,方便大家能够理解ES查询语句. 1 - distinct ; { &quo ...
- Docker下安装zookeeper(单机 & 集群)
启动Docker后,先看一下我们有哪些选择. 有官方的当然选择官方啦~ 下载: [root@localhost admin]# docker pull zookeeper Using default ...
- 011 SpringCloud 学习笔记7-----Zuul网关
1.Zuul网关概述 通过前面的学习,使用Spring Cloud实现微服务的架构基本成型,大致是这样的: 我们使用Spring Cloud Netflix中的Eureka实现了服务注册中心以及服务注 ...
- 2019-7-18 collections,time,random,os,sys,序列化模块(json和pickle)应用
一.collections模块 1.具名元组:namedtuple(生成可以使用名字来访问元素的tuple) 表示坐标点x为1 y为2的坐标 注意:第二个参数可以传可迭代对象,也可以传字符串,但是字 ...
- DS 图解快排
快速排序是交换排序,是冒泡排序的改进版. 快排过程: 1.选定一个分界值 2.分成三个部分(小于分界部分,分界值,大于分界值部分) 3.对于分开的两 ...
- TCP/IP详解 IP路由选择
TCP/IP详解 IP路由选择 在本篇文章当中, 将通过例子来说明IP路由选择器过程 如图所示, 主机A与主机B分别是处在两个不同的子网当中, 中间通过一个路由连接. 如果主机A请求与主机B进行通行, ...