Description

Input

第一行给出三个正整数 N, R, C。 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室,类型为 Ti。Ti是一个1~3间的整数, 1表示可以传送到第 xi行任意一列的“横天门”,2表示可以传送到任意一行第 yi列的“纵寰门”,3表示可以传送到周围 8格宫室的“自 由 门”。 保证 1≤xi≤R,1≤yi≤C,所有的传送门位置互不相同。

Output

只有一个正整数,表示你确定的路线所经过不同藏宝宫室的最大数目。

Sample Input

10 7 7

2 2 1

2 4 2

1 7 2

2 7 3

4 2 2

4 4 1

6 7 3

7 7 1

7 5 2

5 2 1

Sample Output

9

HINT

测试点编号 N R C 1 16 20 20 2 300 1,000 1,000 3 500 100,000 100,000 4 2,500 5,000 5,000 5 50,000 5,000 5,000 6 50,000 1,000,000 1,000,000 7 80,000 1,000,000 1,000,000 8 100,000 1,000,000 1,000,000 9 100,000 1,000,000 1,000,000 10 100,000 1,000,000 1,000,000

Solution

先考虑最朴素的方法,对于一个宝藏,从它向所有它能到达的点连有向边。于是得到了一个有向有环图,对这个图进行缩点,于是得到一个DAG,我们想要的答案就可以在这个DAG上dp求得

但是这样的边数是 \(O(n^2)\) 的,承受不了。于是考虑对于每一行和每一列建一个超级点,这个超级点可以到达当前列的所有宝藏点。而对于一个宝藏,如果它是第一种门,则将它向它所在的行的超级点连边,第二种门同理,第三种门就直接连能到达的宝藏。这样就把边数降了下来,可以承受

需要注意的是,这种缩完点后还要dp的问题,重新建边的时候要注意重边的问题

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=2100000+10,MAXM=1000000+10,MAXD=100000+10;
int n,r,c,e,snt,cnt,Be[MAXN],DFN[MAXN],LOW[MAXN],f[MAXN],in[MAXN],beg[MAXN],ans,to[MAXM<<1],nex[MAXM<<1],Visit_Num,Stack[MAXN],Stack_Num,In_Stack[MAXN],val[MAXN],dr[8][2]={{-1,-1},{-1,0},{-1,1},{0,-1},{0,1},{1,-1},{1,0},{1,1}};
struct node{
int x,y,t;
};
node type[MAXD];
struct edge{
int u,v;
inline bool operator < (const edge &A) const {
return u<A.u||(u==A.u&&v<A.v);
};
inline bool operator == (const edge &A) const {
return u==A.u&&v==A.v;
};
};
edge side[MAXM];
std::queue<int> q;
std::map<int,int> M;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int id(int x,int y)
{
return (x-1)*c+y;
}
inline void insert(int x,int y,int opt=1)
{
if(opt)side[++snt]=(edge){x,y};
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void Tarjan(int x)
{
DFN[x]=LOW[x]=++Visit_Num;
In_Stack[x]=1;
Stack[++Stack_Num]=x;
for(register int i=beg[x];i;i=nex[i])
if(!DFN[to[i]])Tarjan(to[i]),chkmin(LOW[x],LOW[to[i]]);
else if(In_Stack[to[i]]&&DFN[to[i]]<LOW[x])LOW[x]=DFN[to[i]];
if(LOW[x]==DFN[x])
{
int temp;++cnt;
do{
temp=Stack[Stack_Num--];
In_Stack[temp]=0;
Be[temp]=cnt;
val[cnt]+=(temp<=n?1:0);
}while(temp!=x);
}
}
inline void toposort()
{
for(register int i=1;i<=cnt;++i)
if(!in[i])q.push(i),f[i]=val[i];
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
{
chkmax(f[to[i]],f[x]+val[to[i]]);
in[to[i]]--;
if(!in[to[i]])q.push(to[i]);
}
}
}
int main()
{
read(n);read(r);read(c);
for(register int i=1;i<=n;++i)
{
int x,y,t;read(x);read(y);read(t);
insert(x+n,i);insert(y+r+n,i);
M[id(x,y)]=i;
type[i]=(node){x,y,t};
}
for(register int i=1;i<=n;++i)
{
int x=type[i].x,y=type[i].y,t=type[i].t;
if(t==1)insert(i,x+n);
if(t==2)insert(i,y+r+n);
if(t==3)
for(register int k=0;k<8;++k)
{
int dx=x+dr[k][0],dy=y+dr[k][1];
if(M[id(dx,dy)])insert(i,M[id(dx,dy)]);
}
}
for(register int i=1;i<=n+r+c;++i)
if(!DFN[i])Tarjan(i);
e=0;memset(beg,0,sizeof(beg));
for(register int i=1;i<=snt;++i)side[i].u=Be[side[i].u],side[i].v=Be[side[i].v];
std::sort(side+1,side+snt+1);
snt=std::unique(side+1,side+snt+1)-side-1;
for(register int i=1;i<=snt;++i)
if(side[i].u!=side[i].v)insert(side[i].u,side[i].v,0),in[side[i].v]++;
toposort();
for(register int i=1;i<=cnt;++i)chkmax(ans,f[i]);
write(ans,'\n');
return 0;
}

【刷题】BZOJ 1924 [Sdoi2010]所驼门王的宝藏的更多相关文章

  1. [BZOJ 1924][Sdoi2010]所驼门王的宝藏

    1924: [Sdoi2010]所驼门王的宝藏 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1285  Solved: 574[Submit][Sta ...

  2. BZOJ 1924: [Sdoi2010]所驼门王的宝藏 【tarjan】

    Description 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为“先 知”的Alpaca L. Sotomon 是这个家族的领袖,外人也称其为“所驼门王”.所 驼门王毕生致力于维 ...

  3. bzoj 1924 [Sdoi2010]所驼门王的宝藏(构图,SCC,DP)

    Description Input 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室 ...

  4. 【题解】SDOI2010所驼门王的宝藏(强连通分量+优化建图)

    [题解]SDOI2010所驼门王的宝藏(强连通分量+优化建图) 最开始我想写线段树优化建图的说,数据结构学傻了233 虽然矩阵很大,但是没什么用,真正有用的是那些关键点 考虑关键点的类型: 横走型 竖 ...

  5. [LuoguP2403][SDOI2010]所驼门王的宝藏

    题目描述 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为"先知"的Alpaca L. Sotomon是这个家族的领袖,外人也称其为"所驼门王". ...

  6. [SDOI2010]所驼门王的宝藏

    题目描述 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为"先知"的Alpaca L. Sotomon是这个家族的领袖,外人也称其为"所驼门王". ...

  7. 洛谷 2403 [SDOI2010] 所驼门王的宝藏

    题目描述 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为“先知”的Alpaca L. Sotomon是这个家族的领袖,外人也称其为“所驼门王”.所驼门王毕生致力于维护家族的安定与和谐, ...

  8. Luogu 2403 [SDOI2010]所驼门王的宝藏

    BZOJ 1924 内存要算准,我MLE了两次. 建立$n + r + c$个点,对于一个点$i$的坐标为$(x, y)$,连边$(n + x, i)$和$(n + r + y, i)$,代表这一列和 ...

  9. BZOJ 1924 && Luogu P2403 [SDOI2010]所驼门王的宝藏 恶心建图+缩点DP

    记住:map一定要这么用: if(mp[x[i]+dx[j]].find(y[i]+dy[j])!=mp[x[i]+dx[j]].end()) add(i,mp[x[i]+dx[j]][y[i]+dy ...

随机推荐

  1. Json.NET序列化后包含类型,保证序列化和反序列化的对象类型相同(转载)

    This sample uses the TypeNameHandlingsetting to include type information when serializing JSON and r ...

  2. 20155234《网路对抗》Exp9 WEB安全基础

    20155234 Exp9 Web安全基础 基础问答 SQL注入攻击原理,如何防御? SQL注入攻击就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意 ...

  3. EZ 2018 03 30 NOIP2018 模拟赛(六)

    链接:http://211.140.156.254:2333/contest/67 转眼间上次加回来的Rating又掉完了. 这次不知为何特别水,T1想了一段时间没想出来弃了,导致后面心态炸了. T2 ...

  4. UCOSII笔记---信号量、邮箱、消息队列、信号量集、软件定时器

    一.接收邮箱函数的参数:timeout表示的是滴答定时器的节拍数,比如设定5ms为一个节拍,超时为100ms,则timeout=20. void *OSMboxPend (OS_EVENT *peve ...

  5. xml中该使用属性还是元素

    XML 中没有规定哪些必须放在属性或者子元素,因此使用哪种方式都是可以实现的.这取决于个人的经验和喜好.在可以使用元素也可以使用属性的两选一的情况下,个人更倾向于使用子元素.主要理由如下: 1. 属性 ...

  6. LHS 和 RHS----你所不知道的JavaScript系列(1)

      变量的赋值操作会执行两个动作, 首先编译器会在当前作用域中声明一个变量(如果之前没有声明过), 然后在运行时引擎会在作用域中查找该变量, 如果能够找到就会对它赋值.----<你所不知道的Ja ...

  7. Altium CAED 国际认证操作题例题(含下载)

    官网介绍页面 https://www.altium.com.cn/certification 共五套操作题 含资料 蓝奏云:https://www.lanzous.com/i2lj1ng 百度网盘:h ...

  8. idea创建web项目教程

    官网下载idea,安装配置好后,双击进来,第一次创建项目时新建是这样的 第一步:   第二步:创建项目名和项目存放的路径 点finish进入这里   第三步: 第二步点OK进入这个页面,点上面那个加号 ...

  9. 服装盘点机PDA在服装行业颜色尺码仓库条码高效管理应用

    服装行业的商品管理的特点是需要管理颜色和尺码 具体逻辑就是: 什么商品,什么颜色,什么尺码,入库多少个? 什么商品,什么颜色,什么尺码,出库多少个? 什么商品,什么颜色,什么尺码,还有库存多少个? 如 ...

  10. python之GIL理解

    GIL(Global Interpreter Lock) 全局解释器锁 python3中是假的多线程,它不是真正的并行,是利用了cpu上下文的切换而已.同一时间只能有一个线程使用共享数据,其它线程处于 ...