[转] caffe数据层参数说明
原文地址:http://www.cnblogs.com/denny402/p/5070928.html
稍有修改:
数据层是每个模型的最底层,是模型的入口,不仅提供数据的输入,也提供数据从Blobs转换成别的格式进行保存输出。通常数据的预处理(如减去均值, 放大缩小, 裁剪和镜像等),也在这一层设置参数实现。
数据来源可以来自高效的数据库(如LevelDB和LMDB),也可以直接来自于内存。如果不是很注重效率的话,数据也可来自磁盘的hdf5文件和图片格式文件。
所有的数据层的都具有的公用参数:先看示例

layer {
name: "cifar"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mean_file: "examples/cifar10/mean.binaryproto"
}
data_param {
source: "examples/cifar10/cifar10_train_lmdb"
batch_size: 100
backend: LMDB
}
}

name: 表示该层的名称,自己定义
type: 层类型,如果是Data,表示数据来源于LevelDB或LMDB。根据数据的来源不同,数据层的类型也不同(后面会详细阐述)。一般在练习的时候,我们都是采 用的LevelDB或LMDB数据,因此层类型设置为Data。
top或bottom: 每一层用bottom来输入数据,用top来输出数据。如果只有top没有bottom,则此层只有输出,没有输入。反之亦然。如果有多个 top或多个bottom,表示有多个blobs数据的输入和输出。
data 与 label: 在数据层中,至少有一个命名为data的top。如果有第二个top,一般命名为label。 这种(data,label)配对是分类模型所必需的。
include: 一般训练的时候和测试的时候,模型的层是不一样的。该层(layer)是属于训练阶段的层,还是属于测试阶段的层,需要用include来指定。如果没有include参数,则表示该层既在训练模型中,又在测试模型中。
Transform_param: 数据的预处理,可以将数据变换到定义的范围内。如设置scale为0.00390625,实际上就是1/255, 即将输入数据由0-255归一化到0-1之间
其它的数据预处理也在这个地方设置:

transform_param {
scale: 0.00390625
mean_file_size: "examples/cifar10/mean.binaryproto"
# 用一个配置文件来进行均值操作
mirror: 1 # 1表示开启镜像,0表示关闭,也可用ture和false来表示
# 剪裁一个 227*227的图块,在训练阶段随机剪裁,在测试阶段从中间裁剪
crop_size: 227
}

后面的data_param部分,就是根据数据的来源不同,来进行不同的设置。
1、数据来自于数据库(如LevelDB和LMDB)
层类型(layer type):Data
必须设置的参数:
source: 包含数据库的目录名称,如examples/mnist/mnist_train_lmdb
batch_size: 每次处理的数据个数,如64
可选的参数:
rand_skip: 在开始的时候,路过某个数据的输入。通常对异步的SGD很有用。
backend: 选择是采用LevelDB还是LMDB, 默认是LevelDB;如果Windows下数据集一般为LEVELDB,记得修改。
示例:

layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/mnist/mnist_train_lmdb"
batch_size: 64
backend: LMDB
}
}

2、数据来自于内存
层类型:MemoryData
必须设置的参数:
batch_size:每一次处理的数据个数,比如2
channels:通道数
height:高度
width: 宽度
示例:

layer {
top: "data"
top: "label"
name: "memory_data"
type: "MemoryData"
memory_data_param{
batch_size: 2
height: 100
width: 100
channels: 1
}
transform_param {
scale: 0.0078125
mean_file: "mean.proto"
mirror: false
}
}

3、数据来自于HDF5
层类型:HDF5Data
必须设置的参数:
source: 读取的文件名称
batch_size: 每一次处理的数据个数
示例:

layer {
name: "data"
type: "HDF5Data"
top: "data"
top: "label"
hdf5_data_param {
source: "examples/hdf5_classification/data/train.txt"
batch_size: 10
}
}

4、数据来自于图片
层类型:ImageData
必须设置的参数:
source: 一个文本文件的名字,每一行给定一个图片文件的名称和标签(label)
batch_size: 每一次处理的数据个数,即图片数
可选参数:
rand_skip: 在开始的时候,路过某个数据的输入。通常对异步的SGD很有用。
shuffle: 随机打乱顺序,默认值为false
new_height,new_width: 如果设置,则将图片进行resize
示例:

layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
transform_param {
mirror: false
crop_size: 227
mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
}
image_data_param {
source: "examples/_temp/file_list.txt"
batch_size: 50
new_height: 256
new_width: 256
}
}

5、数据来源于Windows
层类型:WindowData
必须设置的参数:
source: 一个文本文件的名字
batch_size: 每一次处理的数据个数,即图片数
示例:

layer {
name: "data"
type: "WindowData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 227
mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
}
window_data_param {
source: "examples/finetune_pascal_detection/window_file_2007_trainval.txt"
batch_size: 128
fg_threshold: 0.5
bg_threshold: 0.5
fg_fraction: 0.25
context_pad: 16
crop_mode: "warp"
}
}

[转] caffe数据层参数说明的更多相关文章
- 【转】caffe数据层及参数
原文: 要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个层(layer)构成,每一层又由许多参数组成.所有的参数都定义在caffe.proto ...
- 1、Caffe数据层及参数
要运行Caffe,需要先创建一个模型(model),每个模型由许多个层(layer)组成,每个层又都有自己的参数, 而网络模型和参数配置的文件分别是:caffe.prototxt,caffe.solv ...
- Caffe学习笔记(三):Caffe数据是如何输入和输出的?
Caffe学习笔记(三):Caffe数据是如何输入和输出的? Caffe中的数据流以Blobs进行传输,在<Caffe学习笔记(一):Caffe架构及其模型解析>中已经对Blobs进行了简 ...
- 【转】Caffe初试(四)数据层及参数
要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等,而一个模型由多个层(layer)构成,每一层又由许多参数组成.所有的参数都定义在caffe.proto这个文件中 ...
- Caffe学习系列(2):数据层及参数
要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成.所有的参数都定义在caffe.proto这个文件 ...
- 转 Caffe学习系列(2):数据层及参数
http://www.cnblogs.com/denny402/p/5070928.html 要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个 ...
- caffe添加python数据层
caffe添加python数据层(ImageData) 在caffe中添加自定义层时,必须要实现这四个函数,在C++中是(LayerSetUp,Reshape,Forward_cpu,Backward ...
- Caffe实现多标签输入,添加数据层(data layer)
因为之前遇到了sequence learning问题(CRNN),里面涉及到一张图对应多个标签.Caffe源码本身是不支持多类标签数据的输入的. 如果之前习惯调用脚本create_imagenet.s ...
- 【撸码caffe 五】数据层搭建
caffe.cpp中的train函数内声明了一个类型为Solver类的智能指针solver: // Train / Finetune a model. int train() { -- shared_ ...
随机推荐
- BroadcastReceiver介绍
参考资料 : 基础总结篇之五:BroadcastReceiver应用详解 BroadcastReceiver用于接收广播信息,可以通过sendBroadcast等方法进行发送.sendBroadcas ...
- SpringBoot 1.快速搭建一个 SpringBoot Maven工程
一.新建一个Maven工程 (1)选择创建简单MAVNE工程 (2)输入你自己的MAVEN工程的Group Id(必填).Artifact Id(必填).Version(必填).Packaging(必 ...
- phpStudy-坑爹的数据库管理器-phpMyAdmin的默认用户名和密码
在这里我必须承认自己的弱智,第一次使用phpMyAdmin竟然搞了10分钟才进去!!! 要使用默认的用户名和密码: 用户名:root 密码:root 尼玛!坑爹啊!不说清楚让我百度了半天!!!!
- Java之字符流操作-复制文件
package test_demo.fileoper; import java.io.*; /* * 字符输入输出流操作,复制文件 * 使用缓冲流扩展,逐行复制 * */ public class F ...
- SpringBoot整合Mybatis之Annotation
首先需要下载前面一篇文章的代码,在前一章代码上进行修改. SpringBoot整合Mybatis(注解方式) 复制前一个项目,修改配置文件,mybatis的相关配置为: mybatis: type-a ...
- bzoj2134: 单选错位(trie)
预处理前后缀异或和,用trie得到前后缀最大答案,枚举中间点把左右两边加起来就是当前中间点的最大答案了...这个操作没见过,比较有意思,记录一下 #include<iostream> #i ...
- [APIO2018] Duathlon 铁人两项
不经过重点,考虑点双 点双,考虑圆方树 两个点s,t,中间路径上,所有点双里的点都可以经过,特别地,s,t作为割点的时候,不能往后走,也就是不能经过身后的方点 也就是,(s,t)经过树上路径上的所有圆 ...
- 【BZOJ 3451】Tyvj1953 Normal 思维题+期望概率+FFT+点分治
我感觉是很强的一道题……即使我在刷专题,即使我知道这题是fft+点分治,我仍然做不出来……可能是知道是fft+点分治限制了我的思路???(别做梦了,再怎样也想不出来的……)我做这道题的话,一看就想单独 ...
- Intel 8086_通用寄存器|段寄存器
- SQL Server 2012中LEAD函数简单分析
LEAD函数简单点说,就是把下一行的某列数据提取到当前行来显示,看示例更能解释清楚,先看测试用脚本 DECLARE @TestData TABLE( ID INT IDENTITY(1,1), Dep ...