强化学习算法Policy Gradient
1 算法的优缺点
1.1 优点
在DQN算法中,神经网络输出的是动作的q值,这对于一个agent拥有少数的离散的动作还是可以的。但是如果某个agent的动作是连续的,这无疑对DQN算法是一个巨大的挑战,为了解决这个问题,前辈们将基于值的方法改成了基于策略的方法,即输出动作的概率。
1.2 缺点
策略梯度算法应用未来损失的return作为更新迭代的依据,即在一个回合过后,在这一回合中,若执行的某一动作的动作价值R大,则会加在下一回合选择这一动作的概率,反之,若执行的某一动作的动作价值R小,则会在下一回合选择这一动作的概率减小。因此,要想用return做为预测动作概率的神经网络更新的依据,就必须先拥有一个决策链,才能将return计算出来,因此每一个更新是在一个回合结束后才能更新一个。更新的速率比较慢
2 算法的流程
2.1 算法的整体逻辑

2.2 算法的更新逻辑

强化学习算法Policy Gradient的更多相关文章
- 深度学习-深度强化学习(DRL)-Policy Gradient与PPO笔记
Policy Gradient 初始学习李宏毅讲的强化学习,听台湾的口音真是费了九牛二虎之力,后来看到有热心博客整理的很细致,于是转载来看,当作笔记留待复习用,原文链接在文末.看完笔记再去听一听李宏毅 ...
- 强化学习七 - Policy Gradient Methods
一.前言 之前我们讨论的所有问题都是先学习action value,再根据action value 来选择action(无论是根据greedy policy选择使得action value 最大的ac ...
- 深度学习课程笔记(十四)深度强化学习 --- Proximal Policy Optimization (PPO)
深度学习课程笔记(十四)深度强化学习 --- Proximal Policy Optimization (PPO) 2018-07-17 16:54:51 Reference: https://b ...
- 一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm)
一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm) 2017-12-25 16:29:19 对于 A3C 算法感觉自己总是一知半解,现将其梳理一下,记录在此,也 ...
- 强化学习算法DQN
1 DQN的引入 由于q_learning算法是一直更新一张q_table,在场景复杂的情况下,q_table就会大到内存处理的极限,而且在当时深度学习的火热,有人就会想到能不能将从深度学习中借鉴方法 ...
- 基于Keras的OpenAI-gym强化学习的车杆/FlappyBird游戏
强化学习 课程:Q-Learning强化学习(李宏毅).深度强化学习 强化学习是一种允许你创造能从环境中交互学习的AI Agent的机器学习算法,其通过试错来学习.如上图所示,大脑代表AI Agent ...
- 告别炼丹,Google Brain提出强化学习助力Neural Architecture Search | ICLR2017
论文为Google Brain在16年推出的使用强化学习的Neural Architecture Search方法,该方法能够针对数据集搜索构建特定的网络,但需要800卡训练一个月时间.虽然论文的思路 ...
- 强化学习(十三) 策略梯度(Policy Gradient)
在前面讲到的DQN系列强化学习算法中,我们主要对价值函数进行了近似表示,基于价值来学习.这种Value Based强化学习方法在很多领域都得到比较好的应用,但是Value Based强化学习方法也有很 ...
- 强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods)
强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods) 学习笔记: Reinforcement Learning: An Introduction, Richa ...
随机推荐
- 【转】Java学习---volatile 关键字
[原文]https://www.toutiao.com/i6591422029323305480/ 前言 不管是在面试还是实际开发中 volatile 都是一个应该掌握的技能. 首先来看看为什么会出现 ...
- [转]Java学习---7大经典的排序算法总结实现
[原文]https://www.toutiao.com/i6591634652274885128/ 常见排序算法总结与实现 本文使用Java实现这几种排序. 以下是对排序算法总体的介绍. 冒泡排序 比 ...
- [转]Redis学习---Redis高可用技术解决方案总结
[原文]https://www.toutiao.com/i6591646189714670093/ 本文主要针对Redis常见的几种使用方式及其优缺点展开分析. 一.常见使用方式 Redis的几种常见 ...
- SDN 第三次上机作业
SDN 第三次上机作业 1.创建拓扑 2.利用OVS命令下发流表,实现vlan功能 3.利用OVS命令查看流表 s1: s2: 4.验证性测试 5.Wireshark 抓包验证
- PyQt5--QProgressBar
# -*- coding:utf-8 -*- ''' Created on Sep 20, 2018 @author: SaShuangYiBing Comment: ''' import sys f ...
- Volley源码分析(二)CacheDispatcher分析
CacheDispatcher 缓存分发 cacheQueue只是一个优先队列,我们在start方法中,分析了CacheDispatcher的构成是需要cacheQueue,然后调用CacheDisp ...
- JDBC中的SPI实现
DriverManger加载时候会调用如下方法: 关键代码:java.sql.DriverManager#loadInitialDrivers 然后 有时间整理一下
- Java应用中的编码问题(转载)
第三篇:JAVA字符编码系列三:Java应用中的编码问题这部分采用重用机制,引用一篇文章来完整本部分目标.来源: Eceel东西在线 问题研究--字符集编码 地址:http://china.ecee ...
- 谷歌开源漏洞跟踪工具 Monorail 存在跨站点搜索漏洞
一名安全研究员表示,在谷歌开源漏洞跟踪工具 Monorail 中找到一个漏洞,可被用于执行跨站点搜索 (XS-Search) 攻击. Monorail 用于检查和 Chromium 相关项目中的问题, ...
- 用scp命令来通过ssh传输文件,ssh推送.py程序到CentOS7服务器端出现lost connection错误
ssh推送.py程序到CentOS7服务器端运行出现lost connection错误 (base) F:\workspace>dir 驱动器 F 中的卷是 新加卷 卷的序列号是 C2B9-62 ...