问题描述

今日碰到一道差分方程的题目,如下 [
y(n + 2) - cfrac{7}{10}y(n + 1) + cfrac{1}{10}y(n) = 7x(n+2) -2 x(n + 1)
] 已知(x(n) = left(cfrac{1}{2}right)^n u(n) , y(0) = 2, y(1) = 4​),求全响应。

一般求解这种题目的思路很清晰,首先根据特征方程求出特征根,从而得出零输入解的形式,但是这个时候给的条件是(y(0))和(y(1)),而不是(y_{zi}(0))和(y_{zi}(1)),这意味着此时我们不能直接得出零输入解的系数。这个时候我们可以求出系统的零状态响应,然后可以得出(y_{zs}(0))和(y_{zs}(1)),然后根据(y_{zi}(0) = y(0) - y_{zs}(0)),(y_{zi}(1) = y(1) - y_{zs}(1)),然后得出零输入响应的系数,然后将零输入响应和零状态响应相加得到全响应。

上面的思路很清晰,但是却是有点麻烦,我们可以根据 [
begin{aligned}
Z{y(n + 2) } &= z^2(Y(z) - y(0) - y(1)z^{-1}) \
Z{y(n + 1) } &= z(Y(z) - y(0))
end{aligned}
] 对上面同时进行(Z)变换 [
z^2(Y(z) - y(0) - y(1)z^{-1}) - cfrac{7}{10}z(Y(z) - y(0)) + cfrac{1}{10}Y(z) = 7z^2X(z) - 2zX(z)
] 上面的式子是我在答案(不一定正确的答案)上看到的,但是你没有发现有没有一丝丝的不对,怎么 [
Z{x(n + 2)} = z^2X(z) neq z^2(X(z) - x(0) - x(1)z^{-1})
] 那么问题来了,哪种是对的呢?

我认为(Z{x(n + 2)} = z^2(X(z) - x(0) - x(1)z^{-1}))是对的。但是我们经常见到好像是(Z{x(n + 2)} = z^2X(z))的形式,这是怎么回事,这是因为在课本上我们见到的都是(y(n - n_0), x(n - n_0))这种后向差分的形式,因为这时做(Z)变换与(x(-n_0))有关,而(x(n) = 0 , n < 0),所以后面就没有长长的"尾巴"。我们将上面的差分方程改写为 [
y(n) - cfrac{7}{10}y(n - 1) + cfrac{1}{10}y(n - 2) = 7x(n) -2 x(n - 1)
] 然后对两边进行(Z)变换得到 [
Y(z) - cfrac{7}{10}z^{-1}(Y(z) + y(-1)z) + cfrac{1}{10}z^{-2}(Y(z) + y(-1)z + y(-2)z^2) = 7X(z) - 2z^{-1}X(z)
] 因为(x(-1) = x(-2) = 0),所以后面就没有"尾巴",然后两边同时乘以(z^2)得到

[
z^2Y(z) - cfrac{7}{10}z(Y(z) + y(-1)z) + cfrac{1}{10}(Y(z) + y(-1)z + y(-2)z^2) = 7z^2X(z) - 2zX(z)
]

求证想法

为了验证我的说法,这里使用最前面提到的方法(分别求零输入和零状态)和上面我的想法求解,看看答案是否一致,如果一致的话,说明我的想法是正确的。

解法一:

由特征方程 [
r^2 - cfrac{7}{10}r + cfrac{1}{10} = (r - cfrac{1}{2})(r - cfrac{1}{5}) = 0 Rightarrow r = cfrac{1}{2},cfrac{1}{5}
]

于是设零输入响应的解为 [
y_{zi}(n) = C_1 left( cfrac{1}{2} right)^nu(n) + C_2 left( cfrac{1}{5} right)^nu(n)
]

由差分方程知 [
H(z) = cfrac{7z^2 - 2z}{(z - cfrac{1}{2})(z - cfrac{1}{5})}
]

又 [
X(z) = cfrac{z}{z - cfrac{1}{2}}
]

故 [
Y(z) = H(z)X(z) = cfrac{z(7z^2 - 2z)}{(z - cfrac{1}{2})^2(z - cfrac{1}{5})} = cfrac{5}{2} cfrac{z}{(z - cfrac{1}{2})^2} + cfrac{25}{3}cfrac{z}{z - cfrac{1}{2}} - cfrac{4}{3} cfrac{z}{z - cfrac{1 大专栏  Z变换解差分方程的思考}{5}}
]

则 [
y_{zs}(n) = 5nleft( cfrac{1}{2} right)^nu(n) + cfrac{25}{3}left( cfrac{1}{2} right)^nu(n) - cfrac{4}{3}left( cfrac{1}{5} right)^nu(n)
]

则 [
begin{aligned}
y_{zi}(0) &= C_1 + C_2 &= y(0) - y_{zs}(0) &= -5 \
y_{zi}(1) &= cfrac{1}{2}C_1 + cfrac{1}{5}C_2 &= y(1) - y_{zs}(1) & = -cfrac{12}{5}
end{aligned}
]

得到 [
C_1 = -cfrac{14}{3} \
C_2 = -cfrac{1}{3}
]

则 [
y_{zi}(n) = -cfrac{14}{3} left( cfrac{1}{2} right)^nu(n) -cfrac{1}{3} left( cfrac{1}{5} right)^nu(n)
]

解法二: [
y(n + 2) - cfrac{7}{10}y(n + 1) + cfrac{1}{10}y(n) = 7x(n+2) -2 x(n + 1)
]

两边同时求(Z)变换 [
z^2(Y(z) - y(0) - y(1)z^{-1}) - cfrac{7}{10}z(Y(z) - y(0)) + cfrac{1}{10}Y(z) = 7z^2(X(z) - x(0) - x(1)z^{-1}) - 2z(X(z) - x(0))
]

得到 [
Y(z) = cfrac{(y(0) - 7x(0))z^2 + (y(1) - cfrac{7}{10} y(0) - 7x(1) + 2x(0))z}{(z - cfrac{1}{2})(z - cfrac{1}{5})} + H(z)X(z)
]

可知 [
Y_{zi}(z) = cfrac{(y(0) - 7x(0))z^2 + (y(1) - cfrac{7}{10} y(0) - 7x(1) + 2x(0))z}{(z - cfrac{1}{2})(z - cfrac{1}{5})} = cfrac{-5z^2 + cfrac{11}{10}z}{(z - cfrac{1}{2})(z - cfrac{1}{5})} = -cfrac{14}{3}cfrac{z}{z - cfrac{1}{2}} - cfrac{1}{3}cfrac{z}{z - cfrac{1}{5}}
]

所以 [
y_{zi}(n) = -cfrac{14}{3} left( cfrac{1}{2} right)^nu(n) -cfrac{1}{3} left( cfrac{1}{5} right)^nu(n)
]

同第一种解法一样,所以我的想法是正确的(小声BB答案错了)。

总结

其实根据题目给的初始条件不同,我们的解法也不相同,这里总结一下如果给出不同的初始条件应当采取什么解法(以二阶为例):

  1. 给出(y(0), y(1)),就是我上面提到的情况,有两种方法

    1. 分别求零输入响应和零状态响应,此时零输入响应的系数需要求出零状态响应后才能知道
    2. 直接进行(Z)变换
  2. 给出(y_{zi}(0), y_{zi}(1)​),同样也有两种方法,不过与上面有所不同(实际上是简单了)

    1. 分别求零输入响应和零状态响应,此时由于直接给出了(y_{zi}(0), y_{zi}(1)​),所以可以直接求出零输入响应的系数
    2. 直接进行(Z)变换,此时的形式与上面又有所不同,这时不是

    [
    z^2(Y(z) - y(0) - y(1)z^{-1}) - cfrac{7}{10}z(Y(z) - y(0)) + cfrac{1}{10}Y(z) = 7z^2(X(z) - x(0) - x(1)z^{-1}) - 2z(X(z) - x(0))
    ]

    而是 [
    z^2(Y(z) - y_{zi}(0) - y_{zi}(1)z^{-1}) - cfrac{7}{10}z(Y(z) - y_{zi}(0)) + cfrac{1}{10}Y(z) = 7z^2X(z) - 2zX(z)
    ]

  3. 给出(y(-2), y(-1)),同样两种解法,因为(y_{zs}(-2) = y_{zs}(-1) = 0),所以(y_{zi}(-2) = y(-2), y_{zi}(-1) = y(-1)),这时同第二种情况是一样的了

    1. 分别求零输入响应和零状态响应,过程同第二种情况一样

    2. 直接进行(Z)变换,此时的形式为 [
      Y(z) - cfrac{7}{10}z^{-1}(Y(z) + y(-1)z) + cfrac{1}{10}z^{-2}(Y(z) + y(-1)z + y(-2)z^2) = 7X(z) - 2z^{-1}X(z)
      ]

  4. 给出(y(-1), y(0)​),这时我们可以将值代入方程迭代处(y(1)​)从而转变为第一种情况,或者迭代出(y(-2)​)转变为第三种情况。鉴于求解的复杂性,最好迭代出(y(-2)​)

Z变换解差分方程的思考的更多相关文章

  1. 数字信号处理--Z变换,傅里叶变换,拉普拉斯变换

    傅立叶变换.拉普拉斯变换.Z变换最全攻略 作者:时间:2015-07-19来源:网络       傅立叶变换.拉普拉斯变换.Z变换的联系?他们的本质和区别是什么?为什么要进行这些变换.研究的都是什么? ...

  2. 【转】傅里叶变换 拉普拉斯变 z变换 DFT DCT意义

    傅里叶变换在物理学.数论.组合数学.信号处理.概率论.统计学.密码学.声学.光学.海洋学.结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量). ...

  3. [离散时间信号处理学习笔记] 10. z变换与LTI系统

    我们前面讨论了z变换,其实也是为了利用z变换分析LTI系统. 利用z变换得到LTI系统的单位脉冲响应 对于用差分方程描述的LTI系统而言,z变换将十分有用.有如下形式的差分方程: $\displays ...

  4. z 变换

    1. z 变换 单位脉冲响应为 \(h[n]\) 的离散时间线性时不变系统对复指数输入 \(z^n\) 的响应 \(y[n]\) 为 \[ \tag{1} y[n] = H(z) z^{n}\] 式中 ...

  5. 16 Z变换

    Z变换 由于\(DTFT\)变换是有收敛条件的,并且其收敛条件比较严格,很多信号不能够满足条件,为了有效的分析信号,需要放宽收敛的条件,引入\(Z\)变换. 定义 已知序列的\(DTFT\)为 \[ ...

  6. z变换

    ---恢复内容开始--- z变换作用很大 将离散信号从时间域转到频率域 网址 ---恢复内容结束--- z变换作用很大 将离散信号从时间域转到频率域 网址 http://stackoverflow.c ...

  7. 常用函数的DTFT变换对和z变换对

    直接从书上抓图的,为以后查表方便 1.DTFT 2.z变换对

  8. [离散时间信号处理学习笔记] 9. z变换性质

    z变换描述 $x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow}X(z) ,\quad ROC=R_x$ 序列$x[n]$经过z变换后得到复变函数$X(z ...

  9. [离散时间信号处理学习笔记] 7. z变换

    z变换及其收敛域 回顾前面的文章,序列$x[n]$的傅里叶变换(实际上是DTFT,由于本书把它叫做序列的傅里叶变换,因此这里以及后面的文章也统一称DTFT为傅里叶变换)被定义为 $X(e^{j\ome ...

随机推荐

  1. redis(五)---- 简单消息队列

    消息队列一个消息的链表,是一个异步处理的数据处理引擎.不仅能够提高系统的负荷,还能够改善因网络阻塞导致的数据缺失.一般用于邮件发送.手机短信发送,数据表单提交.图片生成.视频转换.日志储存等. red ...

  2. Mac 用终端(命令行)打开vscode编辑器

    1.打开控制面板(⇧⌘P) 2.输入 shell command 在提示里看到 Shell Command: Install ‘code’ command in PATH, 就可以了. 3.使用: c ...

  3. 新iPhone的高售价下,苹果供应商们是该笑还是该哭?

    自新 iPhone发布之日起,世界就从未停止讨论其售价,越来越多的人开始困惑:新 iPhone毫无创新亮点,有什么底气卖到12799RMB呢?整个地球都在期待苹果推出廉价版 iPhone,望眼欲穿地等 ...

  4. UVM实战[二]

    本期将讲解UVM环境构成和启动方式.主要参考资料为 http://bbs.eetop.cn/thread-320165-1-1.html http://rockeric.com/ 环境构成 进行仿真验 ...

  5. xdc如何设置输入延时

    常用命令: Set_input_delay,create_clock,set_output_delay以及用于组合逻辑的set_max_delay. Input delay: 什么是输入延时? Tra ...

  6. 开发大型项目必备 98%公司都在用的十佳 Java Web 应用框架

    众所周知,工欲善其事,必先利其器.选择一个好的 Web 应用框架就像一把称手的兵器,可以助大家披荆斩棘. 今天就为大家整理了十佳 Java Web 应用框架,并简单讨论一下它们的优缺点. 第一,大名鼎 ...

  7. 【WPF学习】第三十七章 触发器

    WPF中有个主题,就是以声明方式扩展代码的功能.当使用样式.资源或数据绑定时,将发现即使不使用代码,也能完成不少工作. 触发器是另一个实现这种功能的例子.使用触发器,可自动完成简单的样式改变,而这通常 ...

  8. php 设计模式之策略者模式

    <?php header('Content-Type:text/html;charset=utf-8'); /** * 策略模式演示代码 * * 为了更好地突出“策略”,我们这里以出行为例演示, ...

  9. python3 str.encode bytes.decode

    str.encode 把字符串编码成字节序列 bytes.decode 把字节序列解码成字符串 https://docs.python.org/3.5/library/stdtypes.html st ...

  10. Linux 下载安装

    安装教程:https://www.runoob.com/linux/linux-install.html Linux图形界面与命令行界面切换https://blog.csdn.net/ab522628 ...