from numpy import *

def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect def loadImages(dirName):
from os import listdir
hwLabels = []
trainingFileList = listdir(dirName) #load the training set
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
if classNumStr == 9: hwLabels.append(-1)
else: hwLabels.append(1)
trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
return trainingMat, hwLabels def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)): #full Platt SMO
oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
iter = 0
entireSet = True
alphaPairsChanged = 0
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
alphaPairsChanged = 0
if entireSet: #go over all
for i in range(oS.m):
alphaPairsChanged += innerL(i,oS)
print("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
iter += 1
else:#go over non-bound (railed) alphas
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
for i in nonBoundIs:
alphaPairsChanged += innerL(i,oS)
print("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
iter += 1
if entireSet: entireSet = False #toggle entire set loop
elif (alphaPairsChanged == 0): entireSet = True
print("iteration number: %d" % iter)
return oS.b,oS.alphas def testDigits(kTup=('rbf', 10)):
dataArr,labelArr = loadImages('F:\\machinelearninginaction\\Ch06\\trainingDigits')
b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
datMat=mat(dataArr)
labelMat = mat(labelArr).transpose()
svInd=nonzero(alphas.A>0)[0]
sVs=datMat[svInd]
labelSV = labelMat[svInd];
print("there are %d Support Vectors" % shape(sVs)[0])
m,n = shape(datMat)
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]):
errorCount += 1
print("the training error rate is: %f" % (float(errorCount)/m))
dataArr,labelArr = loadImages('F:\\machinelearninginaction\\Ch06\\testDigits')
errorCount = 0
datMat=mat(dataArr)
labelMat = mat(labelArr).transpose()
m,n = shape(datMat)
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]):
errorCount += 1
print("the test error rate is: %f" % (float(errorCount)/m))
testDigits(('rbf',20))

吴裕雄--天生自然python机器学习:基于支持向量机SVM的手写数字识别的更多相关文章

  1. 吴裕雄--天生自然python机器学习:支持向量机SVM

    基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 ...

  2. 吴裕雄--天生自然python机器学习:KNN-近邻算法在手写识别系统上的应用

    需要识别的数字已经使用图形处理软件,处理成具有相同的色 彩和大小® : 宽髙是32像 素 *32像素的黑白图像.尽管采用文本格式存储图像不能有效地利用内 存空间,但是为了方便理解,我们还是将图像转换为 ...

  3. 吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验

    实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window ...

  4. 吴裕雄--天生自然python机器学习:朴素贝叶斯算法

    分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先 ...

  5. 吴裕雄--天生自然python机器学习:决策树算法

    我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可 ...

  6. 吴裕雄--天生自然python机器学习:Logistic回归

    假设现在有一些数据点,我们用 一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类 ...

  7. 吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果

    在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主 ...

  8. 吴裕雄--天生自然python机器学习:机器学习简介

    除却一些无关紧要的情况,人们很难直接从原始数据本身获得所需信息.例如 ,对于垃圾邮 件的检测,侦测一个单词是否存在并没有太大的作用,然而当某几个特定单词同时出现时,再辅 以考察邮件长度及其他因素,人们 ...

  9. 吴裕雄--天生自然python机器学习:使用Logistic回归从疝气病症预测病马的死亡率

    ,除了部分指标主观和难以测量外,该数据还存在一个问题,数据集中有 30%的值是缺失的.下面将首先介绍如何处理数据集中的数据缺失问题,然 后 再 利 用 Logistic回 归 和随机梯度上升算法来预测 ...

随机推荐

  1. MySQL--从库启动复制报错1236

    链接:http://blog.csdn.net/yumushui/article/details/42742461 今天在搭建一个MySQL master-slave集群时,执行了change mas ...

  2. HTTP协议(二):作用

    前言 上一节我们简单介绍了一下TCP/IP协议族的基本情况,知道了四大层的职责,也了解到我们这一族的家族成员以及他们的能力. 无良作者把我这个主角变成了配角,让我很不爽,好在我打了作者一顿,没错,这次 ...

  3. 如何编译生成 mkfs.ubifs、ubinize 工具

    参考文档: 1.<CoM335X linux开发指南.pdf>的附件1 2.ubifs的制作,移植的重点详解(使用交叉编译器) 3.UBIFS文件系统简介 与 利用mkfs.ubifs和u ...

  4. centos通过yum安装php

    1.添加php的yum软件仓库 sudo rpm -Uvh https://mirror.webtatic.com/yum/el6/latest.rpm 2.安装php相关软件,执行过程中全部选择ye ...

  5. 牛逼了,用Python破解wifi密码

    Python真的是无所不能,原因就是因为Python有数目庞大的库,无数的现成的轮子,让你做很多很多应用都非常方便.wifi跟我们的生活息息相关,无处不在.今天从WiFi连接的原理,再结合代码为大家详 ...

  6. SQL基础教程(第2版)第5章 复杂查询:练习题

    /* 下面是解答示例 */ -- 创建视图的语句 CREATE VIEW ViewPractice5_1 AS SELECT product_name, sale_price, regist_date ...

  7. Ubuntu的软件安装管理---dpkg与apt-*详解

    摘要:软件厂商先在他们的系统上面编译好了我们用户所需要的软件,然后将这个编译好并可执行的软件直接发布给用户安装.不同的 Linux 发行版使用不同的打包系统,一般而言,大多数发行版分别属于两大包管理技 ...

  8. VuePress 中增加用户登录功能

    在 VuePress 中增加用户登录 VuePress 是 Vuejs 官方提供的一个快速建设文档站点的工具,在简单配置好功能后,需要做的事情就剩下写好一个个 Markdown 文档. 因为 VueP ...

  9. PAT Advanced 1088 Rational Arithmetic (20) [数学问题-分数的四则运算]

    题目 For two rational numbers, your task is to implement the basic arithmetics, that is, to calculate ...

  10. Python map filter reduce enumerate zip 的用法

    map map(func, list) 把list中的数字,一个一个运用到func中,常和lambda一起用. nums = [1, 2, 3, 4, 5] [*map(lambda x: x**2, ...