from numpy import *

def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect def loadImages(dirName):
from os import listdir
hwLabels = []
trainingFileList = listdir(dirName) #load the training set
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
if classNumStr == 9: hwLabels.append(-1)
else: hwLabels.append(1)
trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
return trainingMat, hwLabels def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)): #full Platt SMO
oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
iter = 0
entireSet = True
alphaPairsChanged = 0
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
alphaPairsChanged = 0
if entireSet: #go over all
for i in range(oS.m):
alphaPairsChanged += innerL(i,oS)
print("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
iter += 1
else:#go over non-bound (railed) alphas
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
for i in nonBoundIs:
alphaPairsChanged += innerL(i,oS)
print("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
iter += 1
if entireSet: entireSet = False #toggle entire set loop
elif (alphaPairsChanged == 0): entireSet = True
print("iteration number: %d" % iter)
return oS.b,oS.alphas def testDigits(kTup=('rbf', 10)):
dataArr,labelArr = loadImages('F:\\machinelearninginaction\\Ch06\\trainingDigits')
b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
datMat=mat(dataArr)
labelMat = mat(labelArr).transpose()
svInd=nonzero(alphas.A>0)[0]
sVs=datMat[svInd]
labelSV = labelMat[svInd];
print("there are %d Support Vectors" % shape(sVs)[0])
m,n = shape(datMat)
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]):
errorCount += 1
print("the training error rate is: %f" % (float(errorCount)/m))
dataArr,labelArr = loadImages('F:\\machinelearninginaction\\Ch06\\testDigits')
errorCount = 0
datMat=mat(dataArr)
labelMat = mat(labelArr).transpose()
m,n = shape(datMat)
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]):
errorCount += 1
print("the test error rate is: %f" % (float(errorCount)/m))
testDigits(('rbf',20))

吴裕雄--天生自然python机器学习:基于支持向量机SVM的手写数字识别的更多相关文章

  1. 吴裕雄--天生自然python机器学习:支持向量机SVM

    基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 ...

  2. 吴裕雄--天生自然python机器学习:KNN-近邻算法在手写识别系统上的应用

    需要识别的数字已经使用图形处理软件,处理成具有相同的色 彩和大小® : 宽髙是32像 素 *32像素的黑白图像.尽管采用文本格式存储图像不能有效地利用内 存空间,但是为了方便理解,我们还是将图像转换为 ...

  3. 吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验

    实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window ...

  4. 吴裕雄--天生自然python机器学习:朴素贝叶斯算法

    分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先 ...

  5. 吴裕雄--天生自然python机器学习:决策树算法

    我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可 ...

  6. 吴裕雄--天生自然python机器学习:Logistic回归

    假设现在有一些数据点,我们用 一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类 ...

  7. 吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果

    在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主 ...

  8. 吴裕雄--天生自然python机器学习:机器学习简介

    除却一些无关紧要的情况,人们很难直接从原始数据本身获得所需信息.例如 ,对于垃圾邮 件的检测,侦测一个单词是否存在并没有太大的作用,然而当某几个特定单词同时出现时,再辅 以考察邮件长度及其他因素,人们 ...

  9. 吴裕雄--天生自然python机器学习:使用Logistic回归从疝气病症预测病马的死亡率

    ,除了部分指标主观和难以测量外,该数据还存在一个问题,数据集中有 30%的值是缺失的.下面将首先介绍如何处理数据集中的数据缺失问题,然 后 再 利 用 Logistic回 归 和随机梯度上升算法来预测 ...

随机推荐

  1. [BJDCTF2020]Mark loves cat

    0x00 知识点 GitHack读取源码 $$会导致变量覆盖漏洞 0x01解题 dirsearch扫描一下,发现/.git目录,用githack获取一下源码. <?php include 'fl ...

  2. 实验4&5

    [实验任务四]: 在上网时,我们经常会看到以下这种对话框,要用户输入一个验证码. 1.程序设计思想 先利用Math.random()得到一个整数,然后将其类型转换为字符类型,连接起来生成六位验证字符串 ...

  3. POJ 3970:Party

    Party Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status ...

  4. 翻译SSD论文(Single Shot MultiBox Detector)

    转自http://lib.csdn.net/article/deeplearning/53059 作者:Ai_Smith 本文翻译而来,如有侵权,请联系博主删除.未经博主允许,请勿转载.每晚泡脚,闲来 ...

  5. 并发与高并发(十三)J.U.C之AQS

    前言 什么是AQS,是AbstractQueuedSynchronizer类的简称.J.U.C大大提高了并发的性能,而AQS又是J.U.S的核心. 主体概要 J.U.C之AQS介绍 J.U.C之AQS ...

  6. Sqlserver 标量函数

    以前只是了解标量函数这个概念,感觉使用量好像并不大,等我真正做sql编码的时候才发现它的好处.简直太方便了实用了. 我们知道在进行软件开发的时候要定义很多不同类型,每个类型又会分很多项.比如: 搞前端 ...

  7. SQL基础教程(第2版)第5章 复杂查询:5-2 子查询

    第5章 复杂查询:5-2 子查询 ● 一言以蔽之,子查询就是一次性视图( SELECT语句).与视图不同,子查询在SELECT语句执行完毕之后就会消失.● 由于子查询需要命名,因此需要根据处理内容来指 ...

  8. PAT B1095 解码PAT准考证

    半个月了,每天做几道题PAT基础题,终于把基础的95道题目做完了.总体来说,没有太难的东西,偶尔几个题目有点复杂而已. 加油,离3月份的考试越来越近了,还有155道题目等着我呢!!! B_1095题目 ...

  9. 练习-HTML表单

    <html lang="en"> <head> <h1>大学生爱好调查</h1> <meta charset="ut ...

  10. Glob 模式

    Glob 是什么 glob 是一种文件匹配模式,全称 global,它起源于 Unix 的 bash shell 中,比如在 linux 中常用的 mv *.txt tmp/ 中,*.txt 就使用到 ...