DQN算法
DQN算法:
基础入门看看
# -*- coding: utf-8 -*-
import random
import gym
import numpy as np
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam EPISODES = 1000 class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.95 # discount rate
self.epsilon = 1.0 # exploration rate
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.model = self._build_model() def _build_model(self):
# Neural Net for Deep-Q learning Model
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse',
optimizer=Adam(lr=self.learning_rate))
return model def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done)) def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0]) # returns action def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = (reward + self.gamma *
np.amax(self.model.predict(next_state)[0]))
target_f = self.model.predict(state)
print target_f
print target
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay def load(self, name):
self.model.load_weights(name) def save(self, name):
self.model.save_weights(name) if __name__ == "__main__":
env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DQNAgent(state_size, action_size)
# agent.load("./save/cartpole-dqn.h5")
done = False
batch_size = 32 for e in range(EPISODES):
state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(500):
# env.render()
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
print 'reward:',reward
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
print("episode: {}/{}, score: {}, e: {:.2}"
.format(e, EPISODES, time, agent.epsilon))
break
if len(agent.memory) > batch_size:
agent.replay(batch_size)
# if e % 10 == 0:
# agent.save("./save/cartpole-dqn.h5")
DQN算法的更多相关文章
- 【强化学习】DQN 算法改进
DQN 算法改进 (一)Dueling DQN Dueling DQN 是一种基于 DQN 的改进算法.主要突破点:利用模型结构将值函数表示成更加细致的形式,这使得模型能够拥有更好的表现.下面给出公式 ...
- DQN算法原理详解
一. 概述 强化学习算法可以分为三大类:value based, policy based 和 actor critic. 常见的是以DQN为代表的value based算法,这种算法中只有一个值函数 ...
- 【转】【强化学习】Deep Q Network(DQN)算法详解
原文地址:https://blog.csdn.net/qq_30615903/article/details/80744083 DQN(Deep Q-Learning)是将深度学习deeplearni ...
- 实现DQN算法玩CartPole
先安装tensorflow 1.2版本和python 3.6, 接着安装: numpy-1.13.1+mkl-cp36-cp36m-win_amd64.whl 的版本,这个是windows下的,如果l ...
- 强化学习算法DQN
1 DQN的引入 由于q_learning算法是一直更新一张q_table,在场景复杂的情况下,q_table就会大到内存处理的极限,而且在当时深度学习的火热,有人就会想到能不能将从深度学习中借鉴方法 ...
- 强化学习(十二) Dueling DQN
在强化学习(十一) Prioritized Replay DQN中,我们讨论了对DQN的经验回放池按权重采样来优化DQN算法的方法,本文讨论另一种优化方法,Dueling DQN.本章内容主要参考了I ...
- 强化学习(十)Double DQN (DDQN)
在强化学习(九)Deep Q-Learning进阶之Nature DQN中,我们讨论了Nature DQN的算法流程,它通过使用两个相同的神经网络,以解决数据样本和网络训练之前的相关性.但是还是有其他 ...
- 强化学习(十一) Prioritized Replay DQN
在强化学习(十)Double DQN (DDQN)中,我们讲到了DDQN使用两个Q网络,用当前Q网络计算最大Q值对应的动作,用目标Q网络计算这个最大动作对应的目标Q值,进而消除贪婪法带来的偏差.今天我 ...
- 强化学习(九)Deep Q-Learning进阶之Nature DQN
在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Learning ...
随机推荐
- 开发wordpress主题
查看我的wordpress站点 第一步:下载wordpress安装包 官网下载==> 第二步:本地安装开发环境 官网给出的环境要求: 可以选择安装wamp/xampp集成PHP开发环境,安装很简 ...
- adobe acrobat x pro破解版
adobe acrobat x pro破解版是Adobe官方出品的PDF文档全能解决方案套件. PDF文件格式是Adobe公司设计的,用其公司开发的Adobe Acrobat X Pro来创建.编辑. ...
- 常用 SQL Server 规范集锦
常用 SQL Server 规范集锦 常见的字段类型选择 1.字符类型建议采用varchar/nvarchar数据类型 2.金额货币建议采用money数据类型 3.科学计数建议采用numeric数 ...
- Hibernate学习---基本介绍+作用+配置
从今天开始重新学习(以前学的太匆忙)Hibernate,这篇文章主要就一下几点进行讲解和说明: Hibernate的基本介绍 Hibernate的作用 Hibernate基本配置 Hibernate的 ...
- ES6模板字符串
ES6支持模板字符串,简单写法如下 //html界面 <!DOCTYPE html> <html> <head> <meta charset="ut ...
- bzoj 1179: [Apio2009]Atm
Description Input 第 一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路 的起点和终点的 ...
- lesson - 4 Linux目录文件管理
内容概要:1. 和目录相关的几个命令mkdir 关注-p选项 rmdir 同样也有一个-p选项rm -r -f 两个常用选项cp -r 针对目录, 有时我们使用/bin/cpmv 重命名或者移动, 有 ...
- Golang 网络爬虫框架gocolly/colly 二 jQuery selector
Golang 网络爬虫框架gocolly/colly 二 jQuery selector colly框架依赖goquery库,goquery将jQuery的语法和特性引入到了go语言中.如果要灵活自如 ...
- Linux_异常_08_本机无法访问虚拟机web等工程
这是因为防火墙的原因,把响应端口开启就行了. # Firewall configuration written by system-config-firewall # Manual customiz ...
- Java点滴之Java概述
写在前面的话 2017年对我来说真是多灾多难的一年,在这过去的一年里发生的种种不幸,促使我下定决心一切要重新开始.在去年的夏天从公司裸辞后,来到了一个陌生的城市开启了新的求职历程,万万没想到的是,求职 ...