题目链接

Problem Description

We define the distance of two strings A and B with same length n is

disA,B=∑i=0n−1|Ai−Bn−1−i|

The difference between the two characters is defined as the difference in ASCII.

You should find the maximum length of two non-overlapping substrings in given string S, and the distance between them are less then or equal to m.

Input

The first line of the input gives the number of test cases T; T test cases follow.

Each case begins with one line with one integers m : the limit distance of substring.

Then a string S follow.

Limits

T≤100

0≤m≤5000

Each character in the string is lowercase letter, 2≤|S|≤5000

∑|S|≤20000

Output

For each test case output one interge denotes the answer : the maximum length of the substring.

Sample Input

1

5

abcdefedcb

Sample Output

5

Hint

[0, 4] abcde

[5, 9] fedcb

The distance between them is abs('a' - 'b') + abs('b' - 'c') + abs('c' - 'd') + abs('d' - 'e') + abs('e' - 'f') = 5

题意:

给定一个字符串与一个距离dis的最大限制,在该串中找到两个等长的无交叉的子串,求在满足dis限制下的最长的子串的长度。

dis的定义为:disA,B=∑i=0n−1|Ai−Bn−1−i|,A、B分别从给定字符串中截取的等长度的无交叉的子串。

分析:

最原来以为要一个一个的循环遍历,这样的话时间复杂度太大,中间也有很多的重复的部分,考虑到这些因素的话,用尺取法来考虑这个问题。

首先我们可以假设 A 一定在 B 左边,然后我们可以考虑A的起点和B的尾部,如果暂时不考虑长度不固定,我们每次查找都让长度尽可能长,那么,我们一定需要将 A的起点和B的尾部,然后获取 A 向右延伸,B 向左延伸对应位置的贡献,然后呢?我们可以采用尺取法来进行A的起点和B的尾部向中间的推移,当 此时的dis值大于 m 时,我们向中间推移 A的起点和B的尾部即可。在这个尺取法的过程中,记录下来最大的 dis 值即可。

简单的说就是,将整个区间划分为两份,然后左右各有一个序列,这个序列是贪心的,贪心的过程利用尺取法来维护最优解,而这里我们需要对区间的划分进行枚举。

这样的话考虑到一种情况就是每次的时候,我们都是在用这个字符串的后半部分来匹配前半部分的任意一种情况,相当于后半部分的字符串是基本上固定的,这样的话匹配的可能行机会减少,为了解决设个问题,我们只需要将字符串逆序,再按照你这的字符串同样的方法比较一下,找出其中的最大值即可。

代码:

#include<bits/stdc++.h>
using namespace std; const int maxn=21000;
char str[maxn];
int m,len; int solve()
{
int ans=0;
for(int i=len; i>=1; i--)///B串的结尾处
{
int cnt=i/2-1,d=0,t=0,p=0;///cnt表示的是A串的结尾处,d表示的是当前串的dis,t表示的是串的长度
for(int j=0; j<=cnt; j++)///j表示的是A串的开始坐标
{
d+=abs(str[1+j]-str[i-j]);///串的长度往后扩展
if(d>m)///这里表示的是当前串的dis超过限制,将串从前面减少,然后从后面增加
{
d-=abs(str[1+p]-str[i-p]);
d-=abs(str[1+j]-str[i-j]);
p++;///前面减去的串的长度
t--;///串的长度也要变化
j--;
}
else
{
t++;
ans=max(ans,t);
}
}
}
return ans;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int ans=0;
scanf("%d%s",&m,str+1);///从第一位开始赋值
len=strlen(str+1);
ans=max(ans,solve());///正序的这次是拿后面的那一部分来与前面的那一部分进行匹配
reverse(str+1,str+len+1);
ans=max(ans,solve());///反序的正好反过来,是用原序列里面前面的那一部分来匹配后面的那一部分
printf("%d\n",ans);
}
return 0;
}

2017ACM暑期多校联合训练 - Team 6 1008 HDU 6103 Kirinriki (模拟 尺取法)的更多相关文章

  1. 2017ACM暑期多校联合训练 - Team 8 1008 HDU 6140 Hybrid Crystals (模拟)

    题目链接 Problem Description Kyber crystals, also called the living crystal or simply the kyber, and kno ...

  2. 2017ACM暑期多校联合训练 - Team 7 1008 HDU 6127 Hard challenge (极角排序)

    题目链接 Problem Description There are n points on the plane, and the ith points has a value vali, and i ...

  3. 2017ACM暑期多校联合训练 - Team 2 1008 HDU 6052 To my boyfriend (数学 模拟)

    题目链接 Problem Description Dear Liao I never forget the moment I met with you. You carefully asked me: ...

  4. 2017ACM暑期多校联合训练 - Team 4 1004 HDU 6070 Dirt Ratio (线段树)

    题目链接 Problem Description In ACM/ICPC contest, the ''Dirt Ratio'' of a team is calculated in the foll ...

  5. 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)

    题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...

  6. 2017ACM暑期多校联合训练 - Team 9 1010 HDU 6170 Two strings (dp)

    题目链接 Problem Description Giving two strings and you should judge if they are matched. The first stri ...

  7. 2017ACM暑期多校联合训练 - Team 8 1006 HDU 6138 Fleet of the Eternal Throne (字符串处理 AC自动机)

    题目链接 Problem Description The Eternal Fleet was built many centuries ago before the time of Valkorion ...

  8. 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)

    题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...

  9. 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)

    题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...

随机推荐

  1. bl bl bl bl bl

    package com.dh.activiti; import org.springframework.web.servlet.HandlerInterceptor; import org.sprin ...

  2. 【Linux】- 简明Vim练习攻略

    vim的学习曲线相当的大(参看各种文本编辑器的学习曲线),所以,如果你一开始看到的是一大堆VIM的命令分类,你一定会对这个编辑器失去兴趣的.下面的文章翻译自<Learn Vim Progress ...

  3. NIO网络编程中重复触发读(写)事件

    一.前言 公司最近要基于Netty构建一个TCP通讯框架, 因Netty是基于NIO的,为了更好的学习和使用Netty,特意去翻了之前记录的NIO的资料,以及重新实现了一遍NIO的网络通讯,不试不知道 ...

  4. mysql(五)查询缓存

    mysql的逻辑架构图如下: 当开启查询缓存时,mysql会将查询结果缓存到查询缓存区域,结果对应的key是使用查询语句,数据库名称,客户端协议的版本等因素算出的一个hash值. 在下次查询时,根据一 ...

  5. 第162天:canvas中Konva库的使用方法

    本篇接着上一篇:第157天:canvas基础知识详解  继续来写. 五.Konva的使用快速上手 5.1 Konva的整体理念 Stage | +------+------+ |            ...

  6. MySQL join 使用方法

    JOIN 按照功能大致分为如下三类: INNER JOIN(内连接,或等值连接):取得两个表中存在连接匹配关系的记录. LEFT JOIN(左连接):取得左表(table1)完全记录,即是右表(tab ...

  7. Halum UVA - 11478(差分约束 + 二分最小值最大化)

    题意: 给定一个有向图,每条边都有一个权值,每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的边的权值增加d,最后要让所有边权的最小值非负且尽量大 两个特判 1 ...

  8. python基础(3)

    使用list和tuple list Python内置的一种数据类型是列表:list.list是一种有序的集合,可以随时添加和删除其中的元素. 比如,列出班里所有同学的名字,就可以用一个list表示: ...

  9. NOIP2017 Day2 T2 宝藏(状压DP)

    $O(n*3^n)$好难想...还有好多没见过的操作 令$f[i][j]$表示最深深度为i,点的状态为j的最小代价,每次枚举状态$S$后,计算$S$的补集里的每个点与S里的点的最小连边代价,再$O(3 ...

  10. DevExpress Components16.2.6 Source Code 重编译教程

    DevExpress 是一个比较有名的界面控件套件,提供了一系列优秀的界面控件.这篇文章将展示如何在拥有源代码的情况下,对 DevExpress 的程序集进行重新编译. 特别提示:重编译后,已安装好的 ...