[APIO2018] 铁人两项

题目大意:

给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径

如果你不会圆方树 ----------------------- 放弃是最好的选择(先学了再来吧)

如果你会圆方树

考虑\((a,...,c)\)

1.如果a,c不同属一个点双,不难发现答案为路上经过的(点双的节点个数)的和减去割点数

2.如果a,c同属一个点双,那么答案为本点双的节点个数 - 2

自然地想到方点的权值为内含节点个数(割点算在内),圆点权值为 -1

所以答案就是树上的路径权值之和了。

树形DP一下就好了 ------------------------------------------- 那就是错了。。。。

考虑的三元组中的a,c明显指圆点,方点是不能作为路径的起点和终点的。。。。。

于是,考虑每个点能出现的路径个数。

记\(sz[e]\)表示节点e在圆方树的子树中存在多少圆点

对于每个点,存在两种路径:

分两种情况统计即可

额外的,对于圆点,因为可能作为起点,终点,还要额外统计

莫名其妙的$loj$和$luogu$的$rk1$.......还是挺懵逼的

代码如下:

#include <cstdio>
#define sid 500050
using namespace std; long long ans;
int n, m, top, tim, nt, cnt, Asz, pp;
int dfn[sid], low[sid], st[sid], sz[sid], val[sid];
int cap[sid], acap[sid], nxt[sid], node[sid]; int read() { scanf("%d", &pp); return pp; }
void upmin(int &a, int b) { if(a > b) a = b; }
void Add(int u, int v) { nxt[++ cnt] = cap[u]; cap[u] = cnt; node[cnt] = v; }
void Bdd(int u, int v) { nxt[++ cnt] = acap[u]; acap[u] = cnt; node[cnt] = v; } void Tarjan(int e) {
dfn[e] = low[e] = ++ tim;
st[++ top] = e; sz[e] = ; val[e] = -;
for(int i = acap[e], d; i; i = nxt[i])
if(!dfn[d = node[i]]) {
Tarjan(d); upmin(low[e], low[d]);
if(low[d] < dfn[e]) continue;
int p; ++ nt; Add(e, nt);
do {
p = st[top --]; val[nt] ++;
Add(nt, p); sz[nt] += sz[p];
} while(p != d);
val[nt] ++; sz[e] += sz[nt];
}
else upmin(low[e], dfn[d]);
} void DP(int e) {
if(e <= n) ans += 1ll * (Asz - ) * val[e];
ans += 1ll * (Asz - sz[e]) * sz[e] * val[e];
for(int i = cap[e]; i; i = nxt[i]) {
int d = node[i];
DP(d), ans += 1ll * (Asz - sz[d]) * sz[d] * val[e];
}
} int main() {
nt = n = read(); m = read();
for(int i = ; i <= m; i ++) {
int u = read(), v = read();
Bdd(u, v); Bdd(v, u);
}
for(int i = ; i <= n; i ++)
if(!dfn[i])
Tarjan(i), Asz = sz[i], DP(i);
printf("%lld\n", ans);
return ;
}

[APIO2018]铁人两项 --- 圆方树的更多相关文章

  1. [APIO2018]铁人两项——圆方树+树形DP

    题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...

  2. [APIO2018]铁人两项 [圆方树模板]

    把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...

  3. [BZOJ5463][APIO2018]铁人两项(圆方树DP)

    题意:给出一张图,求满足存在一条从u到v的长度大于3的简单路径的有序点对(u,v)个数. 做了上一题[HDU5739]Fantasia(点双连通分量+DP),这个题就是一个NOIP题了. 一开始考虑了 ...

  4. [APIO2018] Duathlon 铁人两项 圆方树,DP

    [APIO2018] Duathlon 铁人两项 LG传送门 圆方树+简单DP. 不会圆方树的话可以看看我的另一篇文章. 考虑暴力怎么写,枚举两个点,答案加上两个点之间的点的个数. 看到题面中的一句话 ...

  5. 【Luogu4630】【APIO2018】 Duathlon 铁人两项 (圆方树)

    Description ​ 给你一张\(~n~\)个点\(~m~\)条边的无向图,求有多少个三元组\(~(x, ~y, ~z)~\)满足存在一条从\(~x~\)到\(~z~\)并且经过\(~y~\)的 ...

  6. LOJ 2587 「APIO2018」铁人两项——圆方树

    题目:https://loj.ac/problem/2587 先写了 47 分暴力. 对于 n<=50 的部分, n3 枚举三个点,把图的圆方树建出来,合法条件是 c 是 s -> f 路 ...

  7. loj2587 「APIO2018」铁人两项[圆方树+树形DP]

    主要卡在一个结论上..关于点双有一个常用结论,也经常作为在圆方树/简单路径上的良好性质,对于任意点双内互不相同的三点$s,c,t$,都存在简单路径$s\to c\to t$,证明不会.可以参见clz博 ...

  8. 洛谷P4630 铁人两项--圆方树

    一道很好的圆方树入门题 感谢PinkRabbit巨佬的博客,讲的太好啦 首先是构建圆方树的代码,也比较好想好记 void tarjan(int u) { dfn[u] = low[u] = ++dfn ...

  9. [APIO2018]铁人两项(圆方树)

    过了14个月再重新看这题,发现圆方树从来就没有写过.然后写了这题发现自己APIO2018打铁的原因竟然是没开long long,将树的部分的O(n)写挂了(爆int),毕竟去年APIO时我啥都不会,连 ...

随机推荐

  1. MySql 快速去重方法

    1.复制需要去重的表 CREATE TABLE 新表 LIKE 旧表 ; 2.将需要去重的字段 设置为唯一union 索引 ALTER TABLE 表名 ADD UNIQUE(`字段`); 3.复制旧 ...

  2. 【洛谷 P3965】 [TJOI2013]循环格(费用流)

    题目链接 回路限制经典题. 每个点拆成入点和出点,源点连每个点的出点,流量1,费用0,每个点出点连汇点,流量1,费用0,入点和出点之间没有边. 也就是说每个点必须靠其他点流来的流量来流入汇点,同时自己 ...

  3. JSON简介——(0)

    JSON: JavaScript Object Notation(JavaScript 对象表示法) JSON 是存储和交换文本信息的语法.类似 XML. JSON 比 XML 更小.更快,更易解析. ...

  4. defer用途

    package main /* defer :程序退出时执行,先进后执行 defer庸碌: 1.关闭文件句柄 2.锁资源释放 3.数据库连接释放 */ import ( "fmt" ...

  5. Linux 编译 apr-util 时报错

    前言 Apache 2.4 以后的版本不再自带 APR 库(Apache Portable Runtime,Apache 可移植运行库),所以在安装 Apache 之前需要手动下载安装 APR 库. ...

  6. 新一代的USB 3.0传输规格

    通用序列总线(USB) 从1996问世以来,一统个人电脑外部连接界面,且延伸至各式消费性产品,早已成为现代人生活的一部分.2000年发表的USB 2.0 High-speed规格,提供了480Mbps ...

  7. python魔法函数__dict__和__getattr__的妙用

    python魔法函数__dict__和__getattr__的妙用 __dict__ __dict__是用来存储对象属性的一个字典,其键为属性名,值为属性的值. 既然__dict__是个字典那么我们就 ...

  8. 003iptables 命令介绍

    http://www.cnblogs.com/wangkangluo1/archive/2012/04/19/2457072.html iptables 防火墙可以用于创建过滤(filter)与NAT ...

  9. 禁用quartz自动检查更新

    禁用quartz自动检查更新的3种方法 1, <bean id="startQuertz" lazy-init="false" autowire=&quo ...

  10. insta php-fpm 的配置

    [global]pid = /www/wdlinux/phps/70/var/run/php-fpm.piderror_log = /www/wdlinux/phps/70/var/log/php-f ...