[APIO2018] 铁人两项

题目大意:

给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径

如果你不会圆方树 ----------------------- 放弃是最好的选择(先学了再来吧)

如果你会圆方树

考虑\((a,...,c)\)

1.如果a,c不同属一个点双,不难发现答案为路上经过的(点双的节点个数)的和减去割点数

2.如果a,c同属一个点双,那么答案为本点双的节点个数 - 2

自然地想到方点的权值为内含节点个数(割点算在内),圆点权值为 -1

所以答案就是树上的路径权值之和了。

树形DP一下就好了 ------------------------------------------- 那就是错了。。。。

考虑的三元组中的a,c明显指圆点,方点是不能作为路径的起点和终点的。。。。。

于是,考虑每个点能出现的路径个数。

记\(sz[e]\)表示节点e在圆方树的子树中存在多少圆点

对于每个点,存在两种路径:

分两种情况统计即可

额外的,对于圆点,因为可能作为起点,终点,还要额外统计

莫名其妙的$loj$和$luogu$的$rk1$.......还是挺懵逼的

代码如下:

#include <cstdio>
#define sid 500050
using namespace std; long long ans;
int n, m, top, tim, nt, cnt, Asz, pp;
int dfn[sid], low[sid], st[sid], sz[sid], val[sid];
int cap[sid], acap[sid], nxt[sid], node[sid]; int read() { scanf("%d", &pp); return pp; }
void upmin(int &a, int b) { if(a > b) a = b; }
void Add(int u, int v) { nxt[++ cnt] = cap[u]; cap[u] = cnt; node[cnt] = v; }
void Bdd(int u, int v) { nxt[++ cnt] = acap[u]; acap[u] = cnt; node[cnt] = v; } void Tarjan(int e) {
dfn[e] = low[e] = ++ tim;
st[++ top] = e; sz[e] = ; val[e] = -;
for(int i = acap[e], d; i; i = nxt[i])
if(!dfn[d = node[i]]) {
Tarjan(d); upmin(low[e], low[d]);
if(low[d] < dfn[e]) continue;
int p; ++ nt; Add(e, nt);
do {
p = st[top --]; val[nt] ++;
Add(nt, p); sz[nt] += sz[p];
} while(p != d);
val[nt] ++; sz[e] += sz[nt];
}
else upmin(low[e], dfn[d]);
} void DP(int e) {
if(e <= n) ans += 1ll * (Asz - ) * val[e];
ans += 1ll * (Asz - sz[e]) * sz[e] * val[e];
for(int i = cap[e]; i; i = nxt[i]) {
int d = node[i];
DP(d), ans += 1ll * (Asz - sz[d]) * sz[d] * val[e];
}
} int main() {
nt = n = read(); m = read();
for(int i = ; i <= m; i ++) {
int u = read(), v = read();
Bdd(u, v); Bdd(v, u);
}
for(int i = ; i <= n; i ++)
if(!dfn[i])
Tarjan(i), Asz = sz[i], DP(i);
printf("%lld\n", ans);
return ;
}

[APIO2018]铁人两项 --- 圆方树的更多相关文章

  1. [APIO2018]铁人两项——圆方树+树形DP

    题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...

  2. [APIO2018]铁人两项 [圆方树模板]

    把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...

  3. [BZOJ5463][APIO2018]铁人两项(圆方树DP)

    题意:给出一张图,求满足存在一条从u到v的长度大于3的简单路径的有序点对(u,v)个数. 做了上一题[HDU5739]Fantasia(点双连通分量+DP),这个题就是一个NOIP题了. 一开始考虑了 ...

  4. [APIO2018] Duathlon 铁人两项 圆方树,DP

    [APIO2018] Duathlon 铁人两项 LG传送门 圆方树+简单DP. 不会圆方树的话可以看看我的另一篇文章. 考虑暴力怎么写,枚举两个点,答案加上两个点之间的点的个数. 看到题面中的一句话 ...

  5. 【Luogu4630】【APIO2018】 Duathlon 铁人两项 (圆方树)

    Description ​ 给你一张\(~n~\)个点\(~m~\)条边的无向图,求有多少个三元组\(~(x, ~y, ~z)~\)满足存在一条从\(~x~\)到\(~z~\)并且经过\(~y~\)的 ...

  6. LOJ 2587 「APIO2018」铁人两项——圆方树

    题目:https://loj.ac/problem/2587 先写了 47 分暴力. 对于 n<=50 的部分, n3 枚举三个点,把图的圆方树建出来,合法条件是 c 是 s -> f 路 ...

  7. loj2587 「APIO2018」铁人两项[圆方树+树形DP]

    主要卡在一个结论上..关于点双有一个常用结论,也经常作为在圆方树/简单路径上的良好性质,对于任意点双内互不相同的三点$s,c,t$,都存在简单路径$s\to c\to t$,证明不会.可以参见clz博 ...

  8. 洛谷P4630 铁人两项--圆方树

    一道很好的圆方树入门题 感谢PinkRabbit巨佬的博客,讲的太好啦 首先是构建圆方树的代码,也比较好想好记 void tarjan(int u) { dfn[u] = low[u] = ++dfn ...

  9. [APIO2018]铁人两项(圆方树)

    过了14个月再重新看这题,发现圆方树从来就没有写过.然后写了这题发现自己APIO2018打铁的原因竟然是没开long long,将树的部分的O(n)写挂了(爆int),毕竟去年APIO时我啥都不会,连 ...

随机推荐

  1. 【BZOJ】1485: [HNOI2009]有趣的数列

    [算法]Catalan数 [题解] 学了卡特兰数就会啦>_<! 因为奇偶各自递增,所以确定了奇偶各自的数字后排列唯一. 那么就是给2n个数分奇偶了,是不是有点像入栈出栈序呢. 将做偶数标为 ...

  2. jQuery 页面加载初始化

    jQuery 页面加载初始化的方法有3种 ,页面在加载的时候都会执行脚本,应该没什么区别,主要看习惯吧,本人觉得第二种方法最好,比较简洁. 第一种: $(document).ready(functio ...

  3. windows程序设计.第一个windos程序

    Windows程序设计(第5版) windows程序需要调用API. 第一个Windows程序 /*HelloMsg.c -- Displays "Hello World!" in ...

  4. VideoJS 与 Framework7 中 fastclick 冲突问题

    Framework7 由于自动启用  fastclick,会导致在 移动端下使用 video.js,控制条上的 播放和音量按钮 点击的时候会触发两次. 解决办法: 1. 全局禁用 fastclick, ...

  5. 常见的bug

    常见bug 一. Android系统功能测试设计的测试用例: a.对所测APP划分模块 b.详细列出每个模块的功能点(使用Xmind绘制功能图) c.使用等价类划分.边界值.场景法等对各功能点编写测试 ...

  6. php菜刀分析学习

    这里以eval为例 我们知道, php中的eval能把字符串当代码执行: eval('phpcode'); 注意, 这里的代码要有分号结尾, 我们测试: 我们创建一个最简单的SHELL: <?p ...

  7. 某线下赛AWD

    拿别人比赛的来玩一下,或许这就是菜的力量吧. 0x01 任意文件读取: switch ($row['media_type']) { case 0: // 图片广告 ...... break; case ...

  8. 63.UniquePaths II---dp

    题目链接 题目大意:与62题类似,只是这个题中间有障碍. 法一:dfs,依旧超时.代码如下: public int uniquePathsWithObstacles(int[][] obstacleG ...

  9. WPF之模拟打开或关闭Windows功能

    用WPF模拟打开或关闭Windows功能的实现方法其实很简单,主要用递归判断当前节点的子节点和父节点的选中状态就行了. 一.效果演示 先看看效果图: 二.部分代码 xaml代码: <TreeVi ...

  10. MySQL Table Information

    show tables;                    --显示该数据库里的所有表show columns from 表名;         --显示表字段use information_sc ...