PCA最小平方误差理论推导
PCA最小平方误差理论推导
PCA求解其实是寻找最佳投影方向,即多个方向的标准正交基构成一个超平面。
理论思想:在高维空间中,我们实际上是要找到一个d维超平面,使得数据点到这个超平面的距离平方和最小
假设\(x_k\)表示p维空间的k个点,\(z_k\)表示\(x_k\)在超平面D上的投影向量,\(W = {w_1,w_2,...,w_d}\)为D维空间的标准正交基,即PCA最小平方误差理论转换为如下优化问题\[z_k = \sum_{i=1}^d (w_i^T x_k)w_i---(1)\]
\[argmin \sum_{i=1}^k||x_k - z_k||_2^2\]
\[s.t. w_i^Tw_j = p(当i==j时p=1,否则p=0)\]
注:\(w_i^Tx_k\)为x_k在w_i基向量的投影长度,\(w_i^Tx_kw_i\)为w_i基向量的坐标值
求解:
\(L = (x_k - z_k)^T(x_k-z_k)\)
\(L= x_k^Tx_k - x_k^Tz_k - z_k^Tx_k + z_k^Tz_k\)
由于向量内积性质\(x_k^Tz_k = z_k^Tx_k\)
\(L = x_k^Tx_k - 2x_k^Tz_k + z_k^Tz_k\)
将(1)带入得\[x_k^Tz_k = \sum_{i=1}^dw_i^Tx_kx_k^Tw_i\]
\[z_k^Tz_k = \sum_{i=1}^d\sum_{j=1}^d(w_i^Tx_kw_i)^T(w_j^Tx_kw_j)\]
根据约束条件s.t.得\[z_k^Tz_k = \sum_{i=1}^dw_i^Tx_k^Tx_kw_i\]
\[L =x_k^Tx_k - \sum_{i=1}^dw_i^Tx_kx_k^Tw_i\]
根据奇异值分解\[\sum_{i=1}^dw_i^Tx_kx_k^Tw_i = tr(W^Tx_k^Tx_kW)\]
\[L =argmin\sum_{i=1}^kx_k^Tx_k - tr(W^Tx_k^Tx_kW) = argmin\sum_{i=1}^k- tr(W^Tx_k^Tx_kW) + C\]
等价于带约束得优化问题:\[argmaxtr(W^TXX^TW)\]
\[s.t. W^TW = I\]
最佳超平面W与最大方差法求解的最佳投影方向一致,即协方差矩阵的最大特征值所对应的特征向量,差别仅是协方差矩阵\(\xi\)的一个倍数
定理
\[argmin\phi(W,Z|X) = tr((X-W^TZ)^T(X-W^TZ)) = ||X-W^TZ||_F^2\]
\[s.t.W^TW=I_q\]
注:X为(n,p),Z为(n,q),q < p,w为(p,q)
该定理表达的意思也就是平方差理论,将降维后的矩阵通过W^T投影回去,再与X计算最小平方差,值越小说明信息损失越少
\(\phi\)目标函数最小时,W为X的前q个特征向量矩阵且\(Z=W^TX\)
以上优化可以通过拉格朗日对偶问题求得,最终也会得到\[argmaxtr(W^TXX^TW)\]
\[s.t. W^TW = I\]
PCA最小平方误差理论推导的更多相关文章
- 数据挖掘-diabetes数据集分析-糖尿病病情预测_线性回归_最小平方回归
# coding: utf-8 # 利用 diabetes数据集来学习线性回归 # diabetes 是一个关于糖尿病的数据集, 该数据集包括442个病人的生理数据及一年以后的病情发展情况. # 数据 ...
- PCA算法的最小平方误差解释
PCA算法另外一种理解角度是:最小化点到投影后点的距离平方和. 假设我们有m个样本点,且都位于n维空间 中,而我们要把原n维空间中的样本点投影到k维子空间W中去(k<n),并使得这m个点到投影点 ...
- 【降维】主成分分析PCA推导
本博客根据 百面机器学习,算法工程师带你去面试 一书总结归纳,公式都是出自该书. 本博客仅为个人总结学习,非商业用途,侵删. 网址 http://www.ptpress.com.cn 目录: PCA最 ...
- 主成分分析(PCA)与线性判别分析(LDA)
主成分分析 线性.非监督.全局的降维算法 PCA最大方差理论 出发点:在信号处理领域,信号具有较大方差,噪声具有较小方差 目标:最大化投影方差,让数据在主投影方向上方差最大 PCA的求解方法: 对样本 ...
- PCA降维-最大,最小方差解释
转自http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html http://www.cnblogs.com/jerrylead/ ...
- 降维【PCA & SVD】
PCA(principle component analysis)主成分分析 理论依据 最大方差理论 最小平方误差理论 一.最大方差理论(白面机器学习) 对一个矩阵进行降维,我们希望降维之后的每一维数 ...
- PCA与ICA
关于机器学习理论方面的研究,最好阅读英文原版的学术论文.PCA主要作用是数据降维,而ICA主要作用是盲信号分离.在讲述理论依据之前,先思考以下几个问题:真实的数据训练总是存在以下几个问题: ①特征冗余 ...
- PCA 主成分分析(Principal components analysis )
问题 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到一个数学系的本科生期末考试成绩单,里面有三列, ...
- 一篇深入剖析PCA的好文
主成分分析(Principal components analysis)-最大方差解释 在这一篇之前的内容是<Factor Analysis>,由于非常理论,打算学完整个课程后再写.在写这 ...
随机推荐
- 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 B题
2017-09-24 19:16:38 writer:pprp 题目链接:https://www.jisuanke.com/contest/877 题目如下: You are given a list ...
- hiho#1080 更为复杂的买卖房屋姿势 线段树+区间更新
#1080 : 更为复杂的买卖房屋姿势 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho都是游戏迷,“模拟都市”是他们非常喜欢的一个游戏,在这个游戏里面他们 ...
- 将springboot项目发布到独立的tomcat中运行
在开发阶段我们推荐使用内嵌的tomcat进行开发,因为这样会方便很多,但是到生成环境,我希望在独立的tomcat容器中运行,因为我们需要对tomcat做额外的优化,这时我们需要将工程打包成war包发进 ...
- CTR的贝叶斯平滑
参考论文: Click-Through Rate Estimation for Rare Events in Online Advertising 参考的博客: 1.https://jiayi797. ...
- RotateCard(自定义旋转view)
使用方法Demo package com.example.displaydemo; import java.util.ArrayList; import com.example.displaydemo ...
- C++(二十八) — 构造函数的初始化列表
1.解决的问题: 在 B 类中,组合了一个 A 类对象,其中A类设计了构造函数.由于构造函数的调用规则,设计了构造函数就必须调用,但在定义B类时没有机会初始化A,因此采用构造函数的初始化列表来解决. ...
- 通用Mapper相关
1.通用Mapper中,用@Table来映数据表与实体,其中 name:指定表的名称,例如@Table(name="ls_post") catalog: 指定数据库名称,默认为当前 ...
- 1-27 awk 基本使用
大纲: 色彩: awk基本使用 ##################################################### 一.色彩:shell中,设置输出文本色彩(前景色,背景色) ...
- 【Python】日期模块总结
Time Tuple: 索引 字段 值 0 年(四位数字) 2015 1 月份 1 - 12 2 日期 1 - 31 3 小时 0 - 23 4 分钟 0 - 59 5 秒 0 - 61 (60 或 ...
- Python中实现switchcase
# 第一种方式使用python中的字典# author:wanstack def first_func(): print('first_func') def second_func(): print( ...