[洛谷P1792][国家集训队]种树
题目大意:给出由$n$个数组成的环,取某个数就可以得到它的分数,相邻的两个数不能同时取。问取$m$个数可以得到的最大分数。
题解:建一个大根堆,贪心取,每个点记录前驱后继,取一个点就把前驱后继设成不能取;但这样是不正确的,但假设取了点$p$,可以把$pre_p,p,nxt_p$合成一个点,这个点的前驱为$pre_{pre_p}$,后继为$nxt_{nxt_p}$,价值为$V_{pre_p}+V_{nxt_p}-V_p$,取这个点代表取了$pre_p$和$nxt_p$。这样就可以保证正确
卡点:能信我$Error$打错了?
C++ Code:
#include <cstdio>
#include <queue>
#define maxn 200010
int n, m;
long long ans;
std::priority_queue<std::pair<int, int> > q;
int s[maxn], nxt[maxn], pre[maxn];
bool del[maxn];
int main() {
scanf("%d%d", &n, &m);
if (n < m << 1) {
puts("Error!");
return 0;
puts("TANG.Yx");
}
for (int i = 1; i <= n; i++) {
scanf("%d", s + i);
q.push(std::make_pair(s[i], i));
nxt[i] = i % n + 1;
pre[i] = (i + n - 2) % n + 1;
}
for (int i = 1; i <= m; i++) {
while (del[q.top().second]) q.pop();
ans += q.top().first;
int p = q.top().second, l = pre[p], r = nxt[p];
q.pop();
nxt[pre[p] = pre[l]] = pre[nxt[p] = nxt[r]] = p;
del[l] = del[r] = true;
s[p] = s[l] + s[r] - s[p];
q.push(std::make_pair(s[p], p));
}
printf("%lld\n", ans);
return 0;
}
[洛谷P1792][国家集训队]种树的更多相关文章
- 洛谷P1792 [国家集训队]种树(链表 贪心)
题意 题目链接 Sol 最直观的做法是wqs二分+dp.然而还有一种神仙贪心做法. 不难想到我们可以按权值从大到小依次贪心,把左右两边的打上标记,但这显然是错的比如\(1\ 231\ 233\ 232 ...
- 洛谷P1792——[国家集训队]种树
传送门:QAQQAQ 题意:$n$个点中选$m$个不相邻的点,使得这些点不相邻(1和n算相邻),求这些点的最大值 思路:这不是神仙题不是神仙题…… 刚看到这题觉得不难,好像只要贪心就可以了但贪心不知从 ...
- P1792 [国家集训队]种树
P1792 [国家集训队]种树 题目描述 A城市有一个巨大的圆形广场,为了绿化环境和净化空气,市政府决定沿圆形广场外圈种一圈树. 园林部门得到指令后,初步规划出n个种树的位置,顺时针编号1到n.并且每 ...
- 模板—点分治A(容斥)(洛谷P2634 [国家集训队]聪聪可可)
洛谷P2634 [国家集训队]聪聪可可 静态点分治 一开始还以为要把分治树建出来……• 树的结构不发生改变,点权边权都不变,那么我们利用刚刚的思路,有两种具体的分治方法.• A:朴素做法,直接找重心, ...
- [洛谷P1527] [国家集训队]矩阵乘法
洛谷题目链接:[国家集训队]矩阵乘法 题目背景 原 <补丁VS错误>请前往P2761 题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入输出格式 输入 ...
- 洛谷P1501 [国家集训队]Tree II(LCT,Splay)
洛谷题目传送门 关于LCT的其它问题可以参考一下我的LCT总结 一道LCT很好的练习放懒标记技巧的题目. 一开始看到又做加法又做乘法的时候我是有点mengbi的. 然后我想起了模板线段树2...... ...
- 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)
洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...
- 洛谷 P1407 [国家集训队]稳定婚姻 解题报告
P1407 [国家集训队]稳定婚姻 题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的 ...
- 洛谷 P1852 [国家集训队]跳跳棋 解题报告
P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...
随机推荐
- 【杂题总汇】UVa-1336 Fixing the Great Wall
[UVA-1336]Fixing the Great Wall 一开始把题看错了……直接用的整数存储答案:之后用double存最后输出答案的时候取整就AC了
- (转)神舟飞船上的计算机使用什么操作系统,为什么是自研发不是 Linux?
中国航天用的SpaceOS主要内容是仿造美国风河系统公司的VxWorks653(653是产品名,并非版本号).先解释为什么用这个系统不用Linux:航天器的内存和CPU都非常弱,弱到什么程度呢:天宫一 ...
- Python函数及参数
## 函数 - 函数是代码的一种组织形式,一般一个函数完成一个特定功能 - 函数需要先定义后使用 - 函数的定义 def func_name(参数): func_body ... return fun ...
- python web框架的介绍
随着互联网的兴起,web开发变得愈发的重要.Python作为当前火热的语言, 其中的web开发框架可以说是百花齐放,下面聊一聊这些框架. 一: 基于Python的代表性Web框架 Django Dja ...
- C语言数组篇(四)二维数组
二维数组声明: ][] ={{,,},{,,}; //两行 三列 二维数组在声明的时候可以不写行,但一定要写列 ] = {{,},{,,},{}}; //未声明的地方自动补零 二维 ...
- B1016 部分A+B (15分)
B1016 部分A+B (15分) 输入格式: 输入在一行中依次给出 A.DA.B.DB,中间以空格分隔,其中 \(0<A,B<10^10\). 输出格式: 在一行中输出 PA+PB的值. ...
- HyperLedger Fabric 1.4 比特币历史(1.1)
比特币是一种数字货币,也是一种创新思维,把人们带入到一个无中心化.完全可信任.安全可靠的全新思维领域:一个叫“中本聪”的人或组织,使我们思维产生化学反应,他在2008年10月31日发表了比特币白皮书& ...
- SpringMVC文件上传——bean的配置【org.springframework.web.multipart.commons.CommonsMultipartResolver】
一.简介 Spring MVC支持一个通用的多路上传解析器CommonsMultipartResolver,在Spring的配置文件中对CommonsMultipartResolver Bean进行配 ...
- 笔记-flask基础操作
笔记-flask基础操作 1. 前言 本文为flask基础学习及操作笔记,主要内容为flask基础操作及相关代码. 2. 开发环境配置 2.1. 编译环境准备 安装相关Lib ...
- 集合源码分析之 HashSet
一 知识准备 HashSet 是Set接口的实现类,Set存在的最大意义区别于List就是,Set中存放的元素不能够重复,就是不能够有两个相同的元素存放在Set中,那么怎样的两个元素才算是相同的,这里 ...