前言

  本文较为详细地介绍了一种经典的光流法 - HS 光流法。

光流法简介

  当人的眼睛与被观察物体发生相对运动时,物体的影像在视网膜平面上形成一系列连续变化的图像,这一系列变化的图像信息不断 "流过" 视网膜,好像是一种光的  "流",所以被称为光流。

  光流是基于像素点定义的,所有光流的集合称为光流场。通过对光流场进行分析,可以得到物体相对观察者的运动场。在这过程中分析的算法称为光流法。

HS 光流法的推导

  HS光流计算基于物体移动的光学特性的两个假设:

    1. 运动物体的灰度在很短的间隔时间内保持不变

    2. 给定邻域内的速度向量场变化是缓慢的

  由 1 可得:

    (1)

  上式右边在 x y 处泰勒展开,得:

    (2)

  ε 是包含有 δx,δy 和 δt 的二阶和更高阶项。两边减去 I(x,y,t),再除以δt有:

    (3)

  O (δt) 是含δt的一个小量。在极限中当δt->0时,上式变成:

    (4)

  令 u = dx/dt  v = dy / dt,得:

    (5)

  这条式子就是光流约束方程,它反映了灰度与速度的一个对应关系。

  但,一个式子中有两个变量:u 和 v,显然不能将速度解出,因此需要引入一个新的条件:光流的全局平滑约束条件。

  即 u 和 v 随着像素点移动而发生的改变是缓慢的,局部区域的变化不大,尤其是在目标做无变形刚体运动时,局部区域速度的空间变化率为0。

  因此,引入以下速度平滑项:

    (6)

  对于所有的像素点,需要满足上式和最小。

  综合光流约束条件 (5) 和速度平滑约束条件 (6),可建立以下的极小化方程:

    (7)

  式中的 α 是平滑权重系数,表示速度光滑项所占的权重。

  即:

    (8)

  采用变分计算,根据欧拉方程,

    (9)

    (10)

  得到:

    (11)

    (12)

  式中,拉普拉斯算子可以用某一点的速度与其周围速度平均值之差来近似,有:

  (13)

  (14)

  化简 (13) 和 (14),可得:  ( 这一步运算量比较大 )

    (15)

    (16)

  这样便可以考虑使用迭代法进行求解了,但在此之前,还需要明确其中几个量的求法。

  对于 u 和 v 的均值,采用九点差分格式进行计算:

    (17)

    (18)

  而对于其中的灰度梯度,可以采用以下方法近似计算:

    (19)

    (20)

    (21)

  至此,所有的量都已明确下来,输入前后两帧灰度进行迭代运算便可以得到速度场了,下面是具体的执行过程。

HS光流法执行流程图

  

  1. 读取雷达拼图数据并初始化

  2. 计算求解点的灰度梯度

  3. 设定速度平滑权重系数( 一般设为1 ),初始速度( 一般设为0 ),迭代误差等。

  4. 计算 k-1 次速度平均值

  5. 计算 k 次迭代的速度值

  6. 计算两次迭代光流值的误差,如果小于给定误差阈值,或者者迭代次数超过迭代次数,则计算过程结束,否则进行k+1次迭代。

  

HS 光流法详解的更多相关文章

  1. HS光流算法详解<转载>

    HS 光流法详解 前言 本文较为详细地介绍了一种经典的光流法 - HS 光流法. 光流法简介 当人的眼睛与被观察物体发生相对运动时,物体的影像在视网膜平面上形成一系列连续变化的图像,这一系列变化的图像 ...

  2. 光流法详解之一(LK光流)

    Lucas–Kanade光流算法是一种两帧差分的光流估计算法.它由Bruce D. Lucas 和 Takeo Kanade提出 [1]. LK光流法有三个假设条件: 1. 亮度恒定:一个像素点随着时 ...

  3. 光流法详解之二(HS光流)

    Horn–Schunck光流算法[1]是一种全局方法估算光流场. 参考博文:https://blog.csdn.net/hhyh612/article/details/79216021 假设条件: H ...

  4. RAII惯用法详解

    [1]什么是RAII惯用法? RAII是Resource Acquisition Is Initialization的缩写,意为“资源获取即初始化”. 它是C++之父Bjarne Stroustrup ...

  5. SLAM入门之视觉里程计(6):相机标定 张正友经典标定法详解

    想要从二维图像中获取到场景的三维信息,相机的内参数是必须的,在SLAM中,相机通常是提前标定好的.张正友于1998年在论文:"A Flexible New Technique fro Cam ...

  6. KKT条件和拉格朗日乘子法详解

    \(\frac{以梦为马}{晨凫追风}\) 最优化问题的最优性条件,最优化问题的解的必要条件和充分条件 无约束问题的解的必要条件 \(f(x)\)在\(x\)处的梯度向量是0 有约束问题的最优性条件 ...

  7. 扩展欧几里得算法详解(exgcd)

    一.前言 本博客适合已经学会欧几里得算法的人食用~~~ 二.扩展欧几里得算法 为了更好的理解扩展欧几里得算法,首先你要知道一个叫做贝祖定理的玄学定理: 即如果a.b是整数,那么一定存在整数x.y使得$ ...

  8. lca(最近公共祖先(在线)) 倍增法详解

    转自大佬博客 : https://blog.csdn.net/lw277232240/article/details/72870644 描述:倍增法用于很多算法当中,通过字面意思来理解 LCA是啥呢 ...

  9. 后缀数组 DC3构造法 —— 详解

    学习了后缀数组,顺便把DC3算法也看了一下,传说中可以O(n)复杂度求出文本串的height,先比较一下倍增算法和DC3算法好辣. DC3 倍增法 时间复杂度 O(n)(但是常数很大)   O(nlo ...

随机推荐

  1. elsevier期刊要求翻译

    百度文库 http://wenku.baidu.com/view/e20a27e84afe04a1b071de4e.html 官网文档 http://www.elsevier.com/journals ...

  2. Git配置和常用命令

    Git配置 git config --global user.name "hunng" git config --global user.email "huangthin ...

  3. 页面js中文乱码解决

    <script src="../Content/kindeditor-4.1.5/kindeditor.js" charset="utf-8" >& ...

  4. css中有些属性的前面会加上“*”或“_”,请问分别表示什么意思?

    给不同的浏览器识别 例如: color{ background-color: #CC00FF; /*所有浏览器都会显示为紫色*/ background-color: #FF0000\9; /*IE6. ...

  5. 16、SpringBoot------整合MapStruct

    开发工具:STS 前言: 前端提交往后端的数据,一部分是不需要存入数据库当中的: 后端从数据库中取出的数据,一部分是不可以交给用户的: 那么,po面向的是DB,vo面向的是客户端, mapstruct ...

  6. v-for的显示过滤/排序结果

    对于v-for列表渲染指令,项目中很常用的额,但是我们一般可能在从后端接口拿到数据的时候就把数据通过循环整理改造成自己想要的样子了.有时候可能对于不同的列表需求,还要在data里多造一份数据. 这种做 ...

  7. CI的子目录控制器问题

    不管是根目录还是子目录里面的文件名必须是首字母大写,否则会报404

  8. kubernetes基础架构及原理

    kubernetes简称“k8s” 其中“8”代表的是“k”和“s”中间的8个字母. k8s是Google公司开发的Borg项目中独立出来的容器编排工具,然后将其捐献给CNCF这个组织,然后发扬光大. ...

  9. 生产者消费者-Java代码实现

    import java.util.LinkedList; class Storage{ private static final int MAX = 100; LinkedList<Object ...

  10. python__基础 : 类的__new__方法与实现一个单例

    __new__ : 这个方法的作用主要是创建一个实例,在创建实例时首先会调用 __new__方法 ,然后调用__init__对实例进行初始化, 如果想修改 __new__ 这个方法,那么最后要 ret ...