http://acm.hdu.edu.cn/showproblem.php?

pid=4123

Problem Description
Bob wants to hold a race to encourage people to do sports. He has got trouble in choosing the route. There are N houses and N - 1 roads in his village. Each road connects two houses, and all houses are connected together. To make the race more interesting,
he requires that every participant must start from a different house and run AS FAR AS POSSIBLE without passing a road more than once. The distance difference between the one who runs the longest distance and the one who runs the shortest distance is called
“race difference” by Bob. Bob does not want the “race difference”to be more than Q. The houses are numbered from 1 to N. Bob wants that the No. of all starting house must be consecutive. He is now asking you for help. He wants to know the maximum number of
starting houses he can choose, by other words, the maximum number of people who can take part in his race.
 
Input
There are several test cases.

The first line of each test case contains two integers N and M. N is the number of houses, M is the number of queries.

The following N-1 lines, each contains three integers, x, y and z, indicating that there is a road of length z connecting house x and house y.

The following M lines are the queries. Each line contains an integer Q, asking that at most how many people can take part in Bob’s race according to the above mentioned rules and under the condition that the“race difference”is no more than Q. 



The input ends with N = 0 and M = 0.



(N<=50000 M<=500 1<=x,y<=N 0<=z<=5000 Q<=10000000)
 
Output
For each test case, you should output the answer in a line for each query.
 
Sample Input
5 5
1 2 3
2 3 4
4 5 3
3 4 2
1
2
3
4
5
0 0
 
Sample Output
1
3
3
3
5
/**
hdu 4123 树形DP+RMQ
题目大意:给定一棵树,每个点都从当前位置走到距离最远的位置。1~n的连续区间中最大而且走的最远距离差值不超过Q的区间右多大
解题思路:两遍dfs求出在树中到当前点的最长距离:dfs1求出以当前节点为根节点的子树中到该节点的最长距离和次长距离,dfs2将上一步求出的
最长距离和经过根节点的最长距离比較取最大。利用RMQ查询寻找最大区间
*/
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
const int N=50050;
int head[N],ip;
struct note
{
int v,w,next;
}edge[N*2]; void init()
{
memset(head,-1,sizeof(head));
ip=0;
} void addedge(int u,int v,int w)
{
edge[ip].v=v,edge[ip].w=w,edge[ip].next=head[u],head[u]=ip++;
} int maxn[N],smaxn[N],maxid[N],smaxid[N]; void dfs1(int u,int pre)
{
maxn[u]=smaxn[u]=maxid[u]=smaxid[u]=0;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(pre==v)continue;
dfs1(v,u);
if(maxn[v]+edge[i].w>smaxn[u])
{
smaxid[u]=v;
smaxn[u]=maxn[v]+edge[i].w;
if(maxn[u]<smaxn[u])
{
swap(maxn[u],smaxn[u]);
swap(maxid[u],smaxid[u]);
}
}
}
} void dfs2(int u,int pre)
{
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(pre==v)continue;
if(maxid[u]==v)
{
if(smaxn[u]+edge[i].w>smaxn[v])
{
smaxn[v]=smaxn[u]+edge[i].w;
smaxid[v]=u;
if(maxn[v]<smaxn[v])
{
swap(maxn[v],smaxn[v]);
swap(maxid[v],smaxid[v]);
}
}
}
else
{
if(maxn[u]+edge[i].w>smaxn[v])
{
smaxn[v]=maxn[u]+edge[i].w;
smaxid[v]=u;
if(maxn[v]<smaxn[v])
{
swap(maxn[v],smaxn[v]);
swap(maxid[v],smaxid[v]);
}
}
}
dfs2(v,u);
}
} int a[N],n,m;
int dp1[N][30];
int dp2[N][30]; void RMQ_init(int n)
{
for(int i=1;i<=n;i++)
{
dp1[i][0]=a[i];
dp2[i][0]=a[i];
}
for(int j=1;(1<<j)<=n;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++)///白书上的模板,次行稍作修改。否则dp数组要扩大一倍防止RE
{
dp1[i][j]=max(dp1[i][j-1],dp1[i+(1<<(j-1))][j-1]);
dp2[i][j]=min(dp2[i][j-1],dp2[i+(1<<(j-1))][j-1]);
}
}
} int rmq(int x,int y)
{
int k=0;
while((1<<(k+1))<=y-x+1)k++;
return max(dp1[x][k],dp1[y-(1<<k)+1][k])-min(dp2[x][k],dp2[y-(1<<k)+1][k]);
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
if(n==0&&m==0)break;
init();
for(int i=1;i<n;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
addedge(v,u,w);
}
dfs1(1,-1);
dfs2(1,-1);
for(int i=1;i<=n;i++)
{
a[i]=maxn[i];
}
RMQ_init(n);
while(m--)
{
int Q;
scanf("%d",&Q);
int ans=0;
int id=1;
for(int i=1;i<=n;i++)
{
while(id<=i&&rmq(id,i)>Q)id++;
ans=max(ans,i-id+1);
}
printf("%d\n",ans);
}
}
return 0;
}

hdu 4123 树形DP+RMQ的更多相关文章

  1. hdu 4123 树形DP+单调队列

    http://acm.hust.edu.cn/vjudge/problem/25790 这题基本同poj 3162 要注意mx,mx2,vx,vx2每次都要初始化 #include <iostr ...

  2. 树形DP+RMQ+尺取法 hdu4123

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4123 参考博客:两种解法-树形dp+二分+单调队列(或RMQ)-hdu-4123-Bob’s Race ...

  3. HDU 1520 树形dp裸题

    1.HDU 1520  Anniversary party 2.总结:第一道树形dp,有点纠结 题意:公司聚会,员工与直接上司不能同时来,求最大权值和 #include<iostream> ...

  4. HDU 1561 树形DP入门

    The more, The Better Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  5. HDU 2196树形DP(2个方向)

    HDU 2196 [题目链接]HDU 2196 [题目类型]树形DP(2个方向) &题意: 题意是求树中每个点到所有叶子节点的距离的最大值是多少. &题解: 2次dfs,先把子树的最大 ...

  6. HDU 1520 树形DP入门

    HDU 1520 [题目链接]HDU 1520 [题目类型]树形DP &题意: 某公司要举办一次晚会,但是为了使得晚会的气氛更加活跃,每个参加晚会的人都不希望在晚会中见到他的直接上司,现在已知 ...

  7. codevs 1380/HDU 1520 树形dp

    1380 没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 回到问题 题目描述 Description Ural大学有N个职员 ...

  8. HDU 5834 [树形dp]

    /* 题意:n个点组成的树,点和边都有权值,当第一次访问某个点的时候获得利益为点的权值 每次经过一条边,丢失利益为边的权值.问从第i个点出发,获得的利益最大是多少. 输入: 测试样例组数T n n个数 ...

  9. hdu 4267 树形DP

    思路:先dfs一下,找出1,n间的路径长度和价值,回溯时将该路径长度和价值清零.那么对剩下的图就可以直接树形dp求解了. #include<iostream> #include<al ...

随机推荐

  1. 基于jQuery查找dom的多种方式性能问题

    这个问题的产生由于我们前端组每个人的编码习惯的差异,最主要的还是因为代码的维护性问题.在此基础上,我对jQuery源码(1.11.3)查找dom节点相关的内容进行了仔细的查阅,虽然并不能理解的很深入 ...

  2. 字体圆润属性的使用-webkit-font-smoothing: antialiased

    字体渲染和抗锯齿技术 据称该属性在window下不起作用,不知win10如何,但是在OS和ios中会有不同的展示效果,主要也是展示在webkit内核中,以及android和ios中 大概是说字体渲染的 ...

  3. 绑定下拉框时避免触发SelectedIndexChanged事件

    在从数据库读取数据集绑定到下拉框时会立即触发其SelectedIndexChanged事件造成异常,可对其SelectedIndexChanged事件采取先解除后附加的方法解决. cmbXl_gt.V ...

  4. SVN更新失败,提示locked

    使用SVN更新资源时,提示locked,解决方案如下: 首先找到是哪个文件不能进行更新/提交,在本地工作区间中找到这个文件对应的目录,目录里面会有.svn文件夹,这个文件夹默认是隐藏的,需要设置文件夹 ...

  5. Smart Client Software Factory安装

    首先要安装 Visual Studio 2010 SDK 不然无法安装 Smart Client Software Factory 2010 然后按顺序安装 GAX 2010 http://visua ...

  6. DEDECMS 关键字不能小于2个字节!

    今天在做DEDECMS模板时,突然遇到了“关键字不能小于2个字节!”晕,是怎么回事呢?百度了一下,找到了答案,把他记录下来,方便自己日后再遇到这种问题时,可以查询: <form name=&qu ...

  7. Python Tutorial 学习(十)-- Brief Tour of the Standard Library

    10.1. Operating System Interface os库 import os os.getcwd() # Return the current working directory 'C ...

  8. 物联网操作系统 - Contiki

    What is Contiki? Contiki is an open source operating system for the Internet of Things. Contiki conn ...

  9. WEB工程数据库相关安装脚本写作

    1. 数据库oracle安装 2. 数据库用户创建,表空间创建,表创建 #!/bin/bash current_path=`pwd` create_tablespace=${current_path} ...

  10. Hibernate 配置详解(3)

    7) hibernate.max_fetch_depth: 该属性用于设置left out join单对象查询关系(one-to-one/many-to-one)中最大的关联深度.默认值为0,即默认情 ...