【题意】

  n个点m条边的图 q次询问 找到一条从s到t的一条边 使所有边的最大危险系数最小

Input
There will be at most 5 cases in the input file.
The first line of each case contains two integers N, M (2 ≤ N ≤ 50000, 1 ≤ M ≤ 100000) – number
of cities and roads. The next M lines describe the roads. The i-th of these lines contains three integers:
xi, yi, di (1 ≤ xi, yi ≤ N, 0 ≤ di ≤ 10^9) – the numbers of the cities connected by the i-th road and its
dangerousness.
Description of the roads is followed by a line containing an integer Q (1 ≤ Q ≤ 50000), followed by
Q lines, the i-th of which contains two integers si and ti (1 ≤ si
, ti ≤ N, si ̸= ti).
Consecutive input sets are separated by a blank line.
Output
For each case, output Q lines, the i-th of which contains the minimum dangerousness of a path between
cities si and ti
. Consecutive output blocks are separated by a blank line.
The input file will be such that there will always be at least one valid path.
Sample Input
4 5
1 2 10
1 3 20
1 4 100
2 4 30
3 4 10
2
1 4
4 1
2 1
1 2 100
1
1 2
Sample Output
20
20
100

【分析】

  很明显是最小瓶颈生成树。

  有一个定理:最小生成树是最小瓶颈生成树,但是最小瓶颈生成树不一定是最小生成树。

  我们只要求最小生成树就好了。

  不过这题n较大,不能n^2预处理,所以我们先把树求出来,然后询问的时候 树剖或者倍增 都可以。

  应该是,倍增耗空间但是时间少一个log , 树剖省一点空间但是 时间多一个log (要多一个数据结构维护)

  我上次就打一题倍增MLE了TAT,不过这题正解是倍增,不知道树剖+线段树能不能过。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 50010
#define Maxm 1000010
#define INF 0xfffffff struct node
{
int x,y,c,next;
}t[Maxn*],tt[Maxm];
int len;
int first[Maxn]; bool cmp(node x,node y) {return x.c<y.c;}
int mymax(int x,int y) {return x>y?x:y;} int fa[Maxn];
int ffind(int x)
{
if(fa[x]!=x) fa[x]=ffind(fa[x]);
return fa[x];
} void ins(int x,int y,int c)
{
t[++len].x=x;t[len].y=y;t[len].c=c;
t[len].next=first[x];first[x]=len;
} int f[Maxn][],g[Maxn][],dep[Maxn]; void dfs(int x,int ff,int l)
{
dep[x]=dep[ff]+;
g[x][]=ff;
for(int i=;(<<i)<=dep[x];i++)
g[x][i]=g[g[x][i-]][i-];
f[x][]=l;
for(int i=;(<<i)<=dep[x];i++)
f[x][i]=mymax(f[x][i-],f[g[x][i-]][i-]);
for(int i=first[x];i;i=t[i].next) if(t[i].y!=ff)
dfs(t[i].y,x,t[i].c);
} int ffind(int x,int y)
{
int ans=;
while(dep[x]!=dep[y])
{
int z;
if(dep[x]<dep[y]) z=x,x=y,y=z;
for(int i=;i>=;i--) if(dep[x]-(<<i)>=dep[y])
ans=mymax(ans,f[x][i]),x=g[x][i];
}
if(x==y) return ans;
if(x!=y)
{
for(int i=;i>=;i--) if(g[x][i]!=g[y][i]&&dep[x]>=(<<i))
ans=mymax(ans,f[x][i]),ans=mymax(ans,f[y][i]),
x=g[x][i],y=g[y][i];
}
ans=mymax(ans,f[x][]);ans=mymax(ans,f[y][]);
return ans;
} int main()
{
int n,m;
bool ok=;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(ok) printf("\n");
ok=;
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&tt[i].x,&tt[i].y,&tt[i].c);
}
sort(tt+,tt++m,cmp);
int cnt=;
for(int i=;i<=n;i++) fa[i]=i;
len=;
memset(first,,sizeof(first));
for(int i=;i<=m;i++)
{
if(ffind(tt[i].x)!=ffind(tt[i].y))
{
fa[ffind(tt[i].x)]=ffind(tt[i].y);
cnt++;
ins(tt[i].x,tt[i].y,tt[i].c);
ins(tt[i].y,tt[i].x,tt[i].c);
}
if(cnt==n-) break;
}
dep[]=;
dfs(,,);
int q;
scanf("%d",&q);
for(int i=;i<=q;i++)
{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",ffind(x,y));
}
}
return ;
}

2016-11-01 08:16:45

【UVA 11354】 Bond (最小瓶颈生成树、树上倍增)的更多相关文章

  1. [NOIP2013/Codevs3287]货车运输-最小[大]生成树-树上倍增

    Problem 树上倍增 题目大意 给出一个图,给出若干个点对u,v,求u,v的一条路径,该路径上最小的边权值最大. Solution 看到这个题第一反应是图论.. 然而,任意路径最小的边权值最大,如 ...

  2. 【CF733F】Drivers Dissatisfaction(最小瓶颈生成树,倍增)

    题意:给出一个图,每条边有权值和花费c,每次花费c能使的权值-1.给出一个预算,求减完权值后的一个最小生成树. 思路:感谢CC大神 有这样一个结论:最佳方案里必定存在一种,预算全部花费全部分配在一条边 ...

  3. uva 11354 - Bond(树链拆分)

    题目链接:uva 11354 - Bond 题目大意:给定一张图.每次询问两个节点路径上进过边的危急值的最大值的最小值. 解题思路:首先建立最小生成数,然后依据这棵树做树链剖分. #include & ...

  4. 【最小瓶颈生成树】【最小生成树】【kruscal】bzoj1083 [SCOI2005]繁忙的都市

    本意是求最小瓶颈生成树,但是我们可以证明:最小生成树也是最小瓶颈生成树(其实我不会).数据范围很小,暴力kruscal即可. #include<cstdio> #include<al ...

  5. POJ 1861 ——Network——————【最小瓶颈生成树】

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15268   Accepted: 5987   Specia ...

  6. 【bzoj2429】[HAOI2006]聪明的猴子(图论--最小瓶颈生成树 模版题)

    题意:有M只猴子,他们的最大跳跃距离为Ai.树林中有N棵树露出了水面,给出了它们的坐标.问有多少只猴子能在这个地区露出水面的所有树冠上觅食. 解法:由于要尽量多的猴子能到达所有树冠,便用Kruskal ...

  7. UVA 11354 Bond(最小瓶颈路+倍增)

    题意:问图上任意两点(u,v)之间的路径上,所经过的最大边权最小为多少? 求最小瓶颈路,既是求最小生成树.因为要处理多组询问,所以需要用倍增加速. 先处理出最小生成树,prim的时间复杂度为O(n*n ...

  8. UVA 11354 Bond 邦德 (RMQ,最小瓶颈MST)

    题意: n个城市,m条路,每条路有个危险值,要使得从s走到t的危险值最小.回答q个询问,每个询问有s和t,要求输出从s到t最小的危险值.(5万个点,10万条边) 思路: 其实要求的是任意点对之间的最小 ...

  9. NOIP2013 货车运输 (最大生成树+树上倍增LCA)

    死磕一道题,中间发现倍增还是掌握的不熟 ,而且深刻理解:SB错误毁一生,憋了近2个小时才调对,不过还好一遍AC省了更多的事,不然我一定会疯掉的... 3287 货车运输 2013年NOIP全国联赛提高 ...

随机推荐

  1. R-大数据分析挖掘(5-R基础回顾)

    (一)R函数 R是一种解析型语言,输入后可直接获取结果 函数(输入参数,参数) R的函数分为“高级”和“低级函数” • 高级函数可调用低级函数 • 高级函数称为泛型函数 • 函数名  <-­‐ ...

  2. JS插件-日期

    原文出处 源码下载 原文出处 源码下载

  3. document.all的用法详解

    all[] 已经被 Document 接口的标准的 getElementByid() 方法和 getElementsByTagName() 方法以及 Document 对象的 getElementsB ...

  4. A Swift Tour(3) - Functions and Closures

    Functions and Closures 使用func来声明函数,通过括号参数列表的方式来调用函数,用 --> 来分割函数的返回类型,参数名和类型,例如: func greet(name: ...

  5. 如何诊断oracle数据库运行缓慢或hang住的问题

    为了诊断oracle运行缓慢的问题首先要决定收集哪些论断信息,可以采取下面的诊断方法:1.数据库运行缓慢这个问题是常见还是在特定时间出现如果数据库运行缓慢是一个常见的问题那么可以在问题出现的时候收集这 ...

  6. 02_Jquery_02_元素选择器

    [简述] 元素选择器就是通过元素名来查询元素 $("elementName")这里就可以通过元素名来获取jquery元素了. 但与id选择器不同的是,名称相同的元素有很多,所以获取 ...

  7. poj2104:K-th Number

    思路:可持久化线段树,利用权值线段树,把建树过程看成插入,插入第i个元素就在第i-1棵树的基础上新建结点然后得到第i棵树,那么询问区间[l,r]就是第r棵树上的信息对应减去第l-1棵树上的信息,然后再 ...

  8. c++ fstream中seekg()和seekp()的用法

    转自:http://blog.sina.com.cn/s/blog_679f85d40100mysi.html 先说一下C语言中fseek()的功能: 函数原型:int fseek(FILE *fp, ...

  9. 用source code编译安装Xdebug

    1. Unpack the tarball: tar -xzf xdebug-2.2.x.tgz.  Note that you do not need to unpack the tarball i ...

  10. yum --rpm包安装

    rpm -ivh  package -i 表示安装install -v表示显示详细信息, -vv更详细些 -h表示显示安装进度 --force:表示强制安装 --nodeps:忽略依赖关系安装 --r ...