分类问题

在机器学习中,主要有两大类问题,分别是分类和回归。下面我们先主讲分类问题。

MINST

这里我们会用MINST数据集,也就是众所周知的手写数字集,机器学习中的 Hello World。sk-learn 提供了用于直接下载此数据集的方法:

from sklearn.datasets import fetch_openml

minst = fetch_openml('mnist_784', version=1)
minst.keys()
>dict_keys(['data', 'target', 'feature_names', 'DESCR', 'details', 'categories', 'url'])

像这种sk-learn 下载的数据集,一般都有相似的字典结构,包括:

  • DESCR:描述数据集
  • data:包含一个数组,每行是一条数据,每列是一个特征
  • target:包含一个数组,为label值

我们看一下这些数组:

X,y = minst['data'],minst['target']
X.shape, y.shape
>((70000, 784), (70000,))

可以看到一共有 70000 张图片,每张图片包含784个特征。这是因为每张图包含28×28像素点,每个特征代表的是此像素点强度,取值范围从0(白)到255(黑)。我们先看一下其中一条数据。首先获取一条数据的特征向量,然后reshape到一个28×28 的数组,最后用matplotlib 的imshow() 方法显示即可:

import matplotlib as mpl
import matplotlib.pyplot as plt some_digit = X[0]
some_digit_image = some_digit.reshape(28, 28) plt.imshow(some_digit_image, cmap = mpl.cm.binary, interpolation="nearest")
plt.axis("off")
plt.show()

从图片来看,这个应该是数字5,我们可以通过label 进行验证:

y[0]
>''

可以看到这个label的数值是 string,我们需要将它们转换成int:

import numpy as np

y = y.astype(np.uint8)
>array([5, 0, 4, ..., 4, 5, 6], dtype=uint8)

现在,我们初步了解了数据集。在训练之前,必须要将数据集分为训练集与测试集。这个MINST数据集已经做好了划分,前60000 为训练接,后10000为测试集,直接取用即可:

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

这个训练集已经做过了shuffle,基本可以确保k-折交叉验证的各个集合基本相似(例如不会出现某个折中缺失一些数字)。另一方面,有些学习算法对于训练数据的顺序比较敏感,所以对数据集进行shuffle的好处是避免数据的顺序对训练造成的影响。

训练二元分类器

我们先简化此问题,仅让我们的模型判断一个数字,例如5。这样的分类器称为二元分类器,仅能将数据分为两个类别:数字5和非数字5。下面我们为这类分类器创建label:

y_train_5 = (y_train == 5)
y_test_5 = (y_test == 5)

现在我们选择一个分类器并进行训练,可以先从一个随机梯度下降(Stochastic Gradient Descent,SGD) 分类器开始,使用sk-learn的SGDClassifer 类。这个分类器的优点是:能够高效地处理非常大的数据集。因为它每次均仅处理一条数据(也正因如此,SGD非常适合online learning 场景)。下面创建一个SGDClassifer 并在整个训练集上进行训练:

from sklearn.linear_model import SGDClassifier

sgd_clf = SGDClassifier(random_state=42)
sgd_clf.fit(X_train, y_train_5)

SGDClassifier在训练时会随机选择数据,如果要复现结果的话,则需要手动设置random_state 参数。现在我们可以使用已训练好的模型进行预测一个手写数字是否是5:

sgd_clf.predict([X_test[0], X_test[1], X_test[2]])
>array([False, False, False])

看起来结果还不错,我们稍后评估一下这个模型的性能。

分类问题(一)MINST数据集与二元分类器的更多相关文章

  1. Softmax 回归 vs. k 个二元分类器

    如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢? 这一选择取决于你的类别之间 ...

  2. 神经网络中的Heloo,World,基于MINST数据集的LeNet

    前言 最近刚开始接触机器学习,记录下目前的一些理解,以及看到的一些好文章mark一下 1.MINST数据集 MNIST 数据集来自美国国家标准与技术研究所, National Institute of ...

  3. 3.Minst数据集分类

    import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.mode ...

  4. 电影评论分类:二分类问题(IMDB数据集)

    IMDB数据集是Keras内部集成的,初次导入需要下载一下,之后就可以直接用了. IMDB数据集包含来自互联网的50000条严重两极分化的评论,该数据被分为用于训练的25000条评论和用于测试的250 ...

  5. ML.NET 示例:二元分类之垃圾短信检测

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  6. PyTorch迁移学习-私人数据集上的蚂蚁蜜蜂分类

    迁移学习的两个主要场景 微调CNN:使用预训练的网络来初始化自己的网络,而不是随机初始化,然后训练即可 将CNN看成固定的特征提取器:固定前面的层,重写最后的全连接层,只有这个新的层会被训练 下面修改 ...

  7. 第三章——分类(Classification)

    3.1 MNIST 本章介绍分类,使用MNIST数据集.该数据集包含七万个手写数字图片.使用Scikit-Learn函数即可下载该数据集: >>> from sklearn.data ...

  8. 机器学习入门12 - 分类 (Classification)

    原文链接:https://developers.google.com/machine-learning/crash-course/classification/ 1- 指定阈值 为了将逻辑回归值映射到 ...

  9. sklearn提供的自带的数据集

    sklearn 的数据集有好多个种 自带的小数据集(packaged dataset):sklearn.datasets.load_<name> 可在线下载的数据集(Downloaded ...

随机推荐

  1. 解决session共享问题

    方法一 使用Nginx让它绑定ip(没有共享所以就没有共享问题了) 配置Nginx upstream backserver { ip_hash; server localhost:8080; serv ...

  2. python 访问sql server数据库

    访问数据库 cnxn = pyodbc.connect("Driver={SQL Server};Server=localhost;Database=用户名;uid=sa;pwd=密码&qu ...

  3. Postman实现文件下载功能测试

    背景 实现一个模板下载的功能,然后想用postman进行文件下载的功能测试 实现 然后会弹出下载框 tips:我第一次点的时候,没有任何反应,以为是卡死了,后来发现是弹出的下载框在postman框下面 ...

  4. spring gzip 静态压缩优化

    HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览.相对 于普通的浏览过程HTML ,CSS,Java ...

  5. ECMAScript基本对象——RegExp 正则表达式对象

    含义:定义字符串的组成规则 使用: 1.定义单个字符:[ ] [a] 表示有一个字符是  小写的a [ab] 表示有一个字符是  小写的a或者b [a-z] 表示有一个字符是  小写的a到z [a-z ...

  6. PAT (Basic Level) Practice (中文)1076 Wifi密码 (15 分)

    下面是微博上流传的一张照片:“各位亲爱的同学们,鉴于大家有时需要使用 wifi,又怕耽误亲们的学习,现将 wifi 密码设置为下列数学题答案:A-1:B-2:C-3:D-4:请同学们自己作答,每两日一 ...

  7. PAT (Advanced Level) Practice 1120 Friend Numbers (20 分) (set)

    Two integers are called "friend numbers" if they share the same sum of their digits, and t ...

  8. 精心收集java基础106条

    Java基础 1.一个".java"源文件中是否可以包括多个类(不是内部类)?有什么限制? 一个Java源文件中可以定义多个类,但最多只能定义一个public的类,并且public ...

  9. cenos7 安装samba

    1)安装samba应用# yum install samba samba-client2)启动Samba应用 systemctl start smb nmb3)Samba配置文件 /etc/samba ...

  10. archlinux install.txt

    ++++++ 注意事项+++ +++++++++++++++++++++++++++ 强烈建议新手移步 Arch Wiki > 新手指南 经验者请参阅 Arch Wiki > 安装指南 若 ...