一、前言

  最近几天忙着做点别的东西,今天终于有时间分析源码了,看源码感觉很爽,并且发现ConcurrentHashMap在JDK1.8版本与之前的版本在并发控制上存在很大的差别,很有必要进行认真的分析,下面进行源码分析。

二、ConcurrentHashMap数据结构

  之前已经提及过,ConcurrentHashMap相比HashMap而言,是多线程安全的,其底层数据与HashMap的数据结构相同,数据结构如下

说明:ConcurrentHashMap的数据结构(数组+链表+红黑树),桶中的结构可能是链表,也可能是红黑树,红黑树是为了提高查找效率。

三、ConcurrentHashMap源码分析

 3.1 类的继承关系

public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
implements ConcurrentMap<K,V>, Serializable {
}

  说明:ConcurrentHashMap继承了AbstractMap抽象类,该抽象类定义了一些基本操作,同时,也实现了ConcurrentMap接口,ConcurrentMap接口也定义了一系列操作,实现了Serializable接口表示ConcurrentHashMap可以被序列化。

3.2 类的内部类

ConcurrentHashMap包含了很多内部类,其中主要的内部类框架图如下图所示

说明:可以看到,ConcurrentHashMap的内部类非常的庞大,第二个图是在JDK1.8下增加的类,下面对其中主要的内部类进行分析和讲解。

  1. Node类

  Node类主要用于存储具体键值对,其子类有ForwardingNode、ReservationNode、TreeNode和TreeBin四个子类。四个子类具体的代码在之后的具体例子中进行分析讲解。

  2. Traverser类

  Traverser类主要用于遍历操作,其子类有BaseIterator、KeySpliterator、ValueSpliterator、EntrySpliterator四个类,BaseIterator用于遍历操作。KeySplitertor、ValueSpliterator、EntrySpliterator则用于键、值、键值对的划分。

  3. CollectionView类

  CollectionView抽象类主要定义了视图操作,其子类KeySetView、ValueSetView、EntrySetView分别表示键视图、值视图、键值对视图。对视图均可以进行操作。

  4. Segment类

  Segment类在JDK1.8中与之前的版本的JDK作用存在很大的差别,JDK1.8下,其在普通的ConcurrentHashMap操作中已经没有失效,其在序列化与反序列化的时候会发挥作用。

  5. CounterCell

  CounterCell类主要用于对baseCount的计数。

3.3 类的属性

public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
implements ConcurrentMap<K,V>, Serializable {
private static final long serialVersionUID = 7249069246763182397L;
// 表的最大容量
private static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认表的大小
private static final int DEFAULT_CAPACITY = 16;
// 最大数组大小
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
// 默认并发数
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
// 装载因子
private static final float LOAD_FACTOR = 0.75f;
// 转化为红黑树的阈值
static final int TREEIFY_THRESHOLD = 8;
// 由红黑树转化为链表的阈值
static final int UNTREEIFY_THRESHOLD = 6;
// 转化为红黑树的表的最小容量
static final int MIN_TREEIFY_CAPACITY = 64;
// 每次进行转移的最小值
private static final int MIN_TRANSFER_STRIDE = 16;
// 生成sizeCtl所使用的bit位数
private static int RESIZE_STAMP_BITS = 16;
// 进行扩容所允许的最大线程数
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
// 记录sizeCtl中的大小所需要进行的偏移位数
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
// 一系列的标识
static final int MOVED = -1; // hash for forwarding nodes
static final int TREEBIN = -2; // hash for roots of trees
static final int RESERVED = -3; // hash for transient reservations
static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
//
/** Number of CPUS, to place bounds on some sizings */
// 获取可用的CPU个数
static final int NCPU = Runtime.getRuntime().availableProcessors();
//
/** For serialization compatibility. */
// 进行序列化的属性
private static final ObjectStreamField[] serialPersistentFields = {
new ObjectStreamField("segments", Segment[].class),
new ObjectStreamField("segmentMask", Integer.TYPE),
new ObjectStreamField("segmentShift", Integer.TYPE)
}; // 表
transient volatile Node<K,V>[] table;
// 下一个表
private transient volatile Node<K,V>[] nextTable;
//
/**
* Base counter value, used mainly when there is no contention,
* but also as a fallback during table initialization
* races. Updated via CAS.
*/
// 基本计数
private transient volatile long baseCount;
//
/**
* Table initialization and resizing control. When negative, the
* table is being initialized or resized: -1 for initialization,
* else -(1 + the number of active resizing threads). Otherwise,
* when table is null, holds the initial table size to use upon
* creation, or 0 for default. After initialization, holds the
* next element count value upon which to resize the table.
*/
// 对表初始化和扩容控制
private transient volatile int sizeCtl; /**
* The next table index (plus one) to split while resizing.
*/
// 扩容下另一个表的索引
private transient volatile int transferIndex; /**
* Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
*/
// 旋转锁
private transient volatile int cellsBusy; /**
* Table of counter cells. When non-null, size is a power of 2.
*/
// counterCell表
private transient volatile CounterCell[] counterCells; // views
// 视图
private transient KeySetView<K,V> keySet;
private transient ValuesView<K,V> values;
private transient EntrySetView<K,V> entrySet; // Unsafe mechanics
private static final sun.misc.Unsafe U;
private static final long SIZECTL;
private static final long TRANSFERINDEX;
private static final long BASECOUNT;
private static final long CELLSBUSY;
private static final long CELLVALUE;
private static final long ABASE;
private static final int ASHIFT; static {
try {
U = sun.misc.Unsafe.getUnsafe();
Class<?> k = ConcurrentHashMap.class;
SIZECTL = U.objectFieldOffset
(k.getDeclaredField("sizeCtl"));
TRANSFERINDEX = U.objectFieldOffset
(k.getDeclaredField("transferIndex"));
BASECOUNT = U.objectFieldOffset
(k.getDeclaredField("baseCount"));
CELLSBUSY = U.objectFieldOffset
(k.getDeclaredField("cellsBusy"));
Class<?> ck = CounterCell.class;
CELLVALUE = U.objectFieldOffset
(ck.getDeclaredField("value"));
Class<?> ak = Node[].class;
ABASE = U.arrayBaseOffset(ak);
int scale = U.arrayIndexScale(ak);
if ((scale & (scale - 1)) != 0)
throw new Error("data type scale not a power of two");
ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
} catch (Exception e) {
throw new Error(e);
}
}
}

说明:ConcurrentHashMap的属性很多,其中不少属性在HashMap中就已经介绍过,而对于ConcurrentHashMap而言,添加了Unsafe实例,主要用于反射获取对象相应的字段。

3.4 类的构造函数

1. ConcurrentHashMap()型构造函数

public ConcurrentHashMap() {
}

说明:该构造函数用于创建一个带有默认初始容量 (16)、加载因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。

2. ConcurrentHashMap(int)型构造函数

public ConcurrentHashMap(int initialCapacity) {
if (initialCapacity < 0) // 初始容量小于0,抛出异常
throw new IllegalArgumentException();
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); // 找到最接近该容量的2的幂次方数
// 初始化
this.sizeCtl = cap;
}

说明:该构造函数用于创建一个带有指定初始容量、默认加载因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。

3. ConcurrentHashMap(Map<? extends K, ? extends V>)型构造函数

public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
this.sizeCtl = DEFAULT_CAPACITY;
// 将集合m的元素全部放入
putAll(m);
}

说明:该构造函数用于构造一个与给定映射具有相同映射关系的新映射。

4. ConcurrentHashMap(int, float)型构造函数

public ConcurrentHashMap(int initialCapacity, float loadFactor) {
this(initialCapacity, loadFactor, 1);
}

说明:该构造函数用于创建一个带有指定初始容量、加载因子和默认 concurrencyLevel (1) 的新的空映射。

5. ConcurrentHashMap(int, float, int)型构造函数

public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) // 合法性判断
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
this.sizeCtl = cap;
}

说明:该构造函数用于创建一个带有指定初始容量、加载因子和并发级别的新的空映射。

  对于构造函数而言,会根据输入的initialCapacity的大小来确定一个最小的且大于等于initialCapacity大小的2的n次幂,如initialCapacity为15,则sizeCtl为16,若initialCapacity为16,则sizeCtl为16。若initialCapacity大小超过了允许的最大值,则sizeCtl为最大值。值得注意的是,构造函数中的concurrencyLevel参数已经在JDK1.8中的意义发生了很大的变化,其并不代表所允许的并发数,其只是用来确定sizeCtl大小,在JDK1.8中的并发控制都是针对具体的桶而言,即有多少个桶就可以允许多少个并发数。

3.5 核心函数分析

1. putVal函数

final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException(); // 键或值为空,抛出异常
// 键的hash值经过计算获得hash值
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) { // 无限循环
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0) // 表为空或者表的长度为0
// 初始化表
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { // 表不为空并且表的长度大于0,并且该桶不为空
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null))) // 比较并且交换值,如tab的第i项为空则用新生成的node替换
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED) // 该结点的hash值为MOVED
// 进行结点的转移(在扩容的过程中)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
synchronized (f) { // 加锁同步
if (tabAt(tab, i) == f) { // 找到table表下标为i的节点
if (fh >= 0) { // 该table表中该结点的hash值大于0
// binCount赋值为1
binCount = 1;
for (Node<K,V> e = f;; ++binCount) { // 无限循环
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) { // 结点的hash值相等并且key也相等
// 保存该结点的val值
oldVal = e.val;
if (!onlyIfAbsent) // 进行判断
// 将指定的value保存至结点,即进行了结点值的更新
e.val = value;
break;
}
// 保存当前结点
Node<K,V> pred = e;
if ((e = e.next) == null) { // 当前结点的下一个结点为空,即为最后一个结点
// 新生一个结点并且赋值给next域
pred.next = new Node<K,V>(hash, key,
value, null);
// 退出循环
break;
}
}
}
else if (f instanceof TreeBin) { // 结点为红黑树结点类型
Node<K,V> p;
// binCount赋值为2
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) { // 将hash、key、value放入红黑树
// 保存结点的val
oldVal = p.val;
if (!onlyIfAbsent) // 判断
// 赋值结点value值
p.val = value;
}
}
}
}
if (binCount != 0) { // binCount不为0
if (binCount >= TREEIFY_THRESHOLD) // 如果binCount大于等于转化为红黑树的阈值
// 进行转化
treeifyBin(tab, i);
if (oldVal != null) // 旧值不为空
// 返回旧值
return oldVal;
break;
}
}
}
// 增加binCount的数量
addCount(1L, binCount);
return null;
}

说明:put函数底层调用了putVal进行数据的插入,对于putVal函数的流程大体如下。

  ① 判断存储的key、value是否为空,若为空,则抛出异常,否则,进入步骤②

  ② 计算key的hash值,随后进入无限循环,该无限循环可以确保成功插入数据,若table表为空或者长度为0,则初始化table表,否则,进入步骤③

  ③ 根据key的hash值取出table表中的结点元素,若取出的结点为空(该桶为空),则使用CAS将key、value、hash值生成的结点放入桶中。否则,进入步骤④

  ④ 若该结点的的hash值为MOVED,则对该桶中的结点进行转移,否则,进入步骤⑤

  ⑤ 对桶中的第一个结点(即table表中的结点)进行加锁,对该桶进行遍历,桶中的结点的hash值与key值与给定的hash值和key值相等,则根据标识选择是否进行更新操作(用给定的value值替换该结点的value值),若遍历完桶仍没有找到hash值与key值和指定的hash值与key值相等的结点,则直接新生一个结点并赋值为之前最后一个结点的下一个结点。进入步骤⑥

  ⑥ 若binCount值达到红黑树转化的阈值,则将桶中的结构转化为红黑树存储,最后,增加binCount的值。

  在putVal函数中会涉及到如下几个函数:initTable、tabAt、casTabAt、helpTransfer、putTreeVal、treeifyBin、addCount函数。下面对其中涉及到的函数进行分析。

  其中 initTable函数源码如下

private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) { // 无限循环
if ((sc = sizeCtl) < 0) // sizeCtl小于0,则进行线程让步等待
Thread.yield(); // lost initialization race; just spin
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { // 比较sizeCtl的值与sc是否相等,相等则用-1替换
try {
if ((tab = table) == null || tab.length == 0) { // table表为空或者大小为0
// sc的值是否大于0,若是,则n为sc,否则,n为默认初始容量
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
// 新生结点数组
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
// 赋值给table
table = tab = nt;
// sc为n * 3/4
sc = n - (n >>> 2);
}
} finally {
// 设置sizeCtl的值
sizeCtl = sc;
}
break;
}
}
// 返回table表
return tab;
}

说明:对于table的大小,会根据sizeCtl的值进行设置,如果没有设置szieCtl的值,那么默认生成的table大小为16,否则,会根据sizeCtl的大小设置table大小。

  tabAt函数源码如下

static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}

说明:此函数返回table数组中下标为i的结点,可以看到是通过Unsafe对象通过反射获取的,getObjectVolatile的第二项参数为下标为i的偏移地址。

  casTabAt函数源码如下 

static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
Node<K,V> c, Node<K,V> v) {
return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}

说明:此函数用于比较table数组下标为i的结点是否为c,若为c,则用v交换操作。否则,不进行交换操作。

  helpTransfer函数源码如下

 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
Node<K,V>[] nextTab; int sc;
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) { // table表不为空并且结点类型使ForwardingNode类型,并且结点的nextTable不为空
int rs = resizeStamp(tab.length);
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) { // 条件判断
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0) //
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { // 比较并交换
// 将table的结点转移到nextTab中
transfer(tab, nextTab);
break;
}
}
return nextTab;
}
return table;
}

说明:此函数用于在扩容时将table表中的结点转移到nextTable中。

  putTreeVal函数源码如下

 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if (p == null) {
first = root = new TreeNode<K,V>(h, k, v, null, null);
break;
}
else if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.findTreeNode(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.findTreeNode(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
} TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
TreeNode<K,V> x, f = first;
first = x = new TreeNode<K,V>(h, k, v, f, xp);
if (f != null)
f.prev = x;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
if (!xp.red)
x.red = true;
else {
lockRoot();
try {
root = balanceInsertion(root, x);
} finally {
unlockRoot();
}
}
break;
}
}
assert checkInvariants(root);
return null;
}

说明:此函数用于将指定的hash、key、value值添加到红黑树中,若已经添加了,则返回null,否则返回该结点。

  treeifyBin函数源码如下

 private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) { // 表不为空
if ((n = tab.length) < MIN_TREEIFY_CAPACITY) // table表的长度小于最小的长度
// 进行扩容,调整某个桶中结点数量过多的问题(由于某个桶中结点数量超出了阈值,则触发treeifyBin)
tryPresize(n << 1);
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { // 桶中存在结点并且结点的hash值大于等于0
synchronized (b) { // 对桶中第一个结点进行加锁
if (tabAt(tab, index) == b) { // 第一个结点没有变化
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) { // 遍历桶中所有结点
// 新生一个TreeNode结点
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null) // 该结点前驱为空
// 设置p为头结点
hd = p;
else
// 尾节点的next域赋值为p
tl.next = p;
// 尾节点赋值为p
tl = p;
}
// 设置table表中下标为index的值为hd
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}

说明:此函数用于将桶中的数据结构转化为红黑树,其中,值得注意的是,当table的长度未达到阈值时,会进行一次扩容操作,该操作会使得触发treeifyBin操作的某个桶中的所有元素进行一次重新分配,这样可以避免某个桶中的结点数量太大。

  addCount函数源码如下 

 private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { // counterCells不为空或者比较交换失败
CounterCell a; long v; int m;
// 无竞争标识
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { //
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}

说明:此函数主要完成binCount的值加1的操作。

2. get函数

 public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
// 计算key的hash值
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) { // 表不为空并且表的长度大于0并且key所在的桶不为空
if ((eh = e.hash) == h) { // 表中的元素的hash值与key的hash值相等
if ((ek = e.key) == key || (ek != null && key.equals(ek))) // 键相等
// 返回值
return e.val;
}
else if (eh < 0) // 结点hash值小于0
// 在桶(链表/红黑树)中查找
return (p = e.find(h, key)) != null ? p.val : null;
while ((e = e.next) != null) { // 对于结点hash值大于0的情况
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}

说明:get函数根据key的hash值来计算在哪个桶中,再遍历桶,查找元素,若找到则返回该结点,否则,返回null。

3. replaceNode函数

 final V replaceNode(Object key, V value, Object cv) {
// 计算key的hash值
int hash = spread(key.hashCode());
for (Node<K,V>[] tab = table;;) { // 无限循环
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0 ||
(f = tabAt(tab, i = (n - 1) & hash)) == null) // table表为空或者表长度为0或者key所对应的桶为空
// 跳出循环
break;
else if ((fh = f.hash) == MOVED) // 桶中第一个结点的hash值为MOVED
// 转移
tab = helpTransfer(tab, f);
else {
V oldVal = null;
boolean validated = false;
synchronized (f) { // 加锁同步
if (tabAt(tab, i) == f) { // 桶中的第一个结点没有发生变化
if (fh >= 0) { // 结点hash值大于0
validated = true;
for (Node<K,V> e = f, pred = null;;) { // 无限循环
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) { // 结点的hash值与指定的hash值相等,并且key也相等
V ev = e.val;
if (cv == null || cv == ev ||
(ev != null && cv.equals(ev))) { // cv为空或者与结点value相等或者不为空并且相等
// 保存该结点的val值
oldVal = ev;
if (value != null) // value为null
// 设置结点value值
e.val = value;
else if (pred != null) // 前驱不为空
// 前驱的后继为e的后继,即删除了e结点
pred.next = e.next;
else
// 设置table表中下标为index的值为e.next
setTabAt(tab, i, e.next);
}
break;
}
pred = e;
if ((e = e.next) == null)
break;
}
}
else if (f instanceof TreeBin) { // 为红黑树结点类型
validated = true;
// 类型转化
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> r, p;
if ((r = t.root) != null &&
(p = r.findTreeNode(hash, key, null)) != null) { // 根节点不为空并且存在与指定hash和key相等的结点
// 保存p结点的value
V pv = p.val;
if (cv == null || cv == pv ||
(pv != null && cv.equals(pv))) { // cv为空或者与结点value相等或者不为空并且相等
oldVal = pv;
if (value != null)
p.val = value;
else if (t.removeTreeNode(p)) // 移除p结点
setTabAt(tab, i, untreeify(t.first));
}
}
}
}
}
if (validated) {
if (oldVal != null) {
if (value == null)
// baseCount值减一
addCount(-1L, -1);
return oldVal;
}
break;
}
}
}
return null;
}

说明:此函数对remove函数提供支持,remove函数底层是调用的replaceNode函数实现结点的删除。

四、示例

下面一个示例展示了多线程下HashMap、Hashtable、ConcurrentHashMap的性能差异。源码如下

 package com.hust.grid.leesf.collections;

 import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.CountDownLatch;
import java.util.Collections;
import java.util.Hashtable; class PutThread extends Thread {
private Map<String, Integer> map;
private CountDownLatch countDownLatch;
private String key = this.getId() + ""; PutThread(Map<String, Integer> map, CountDownLatch countDownLatch) {
this.map = map;
this.countDownLatch = countDownLatch;
} public void run() {
for (int i = 1; i <= ConcurrentHashMapDemo.NUMBER; i++) {
map.put(key, i);
}
countDownLatch.countDown();
}
} class GetThread extends Thread {
private Map<String, Integer> map;
private CountDownLatch countDownLatch;
private String key = this.getId() + ""; GetThread(Map<String, Integer> map, CountDownLatch countDownLatch) {
this.map = map;
this.countDownLatch = countDownLatch;
} public void run() {
for (int i = 1; i <= ConcurrentHashMapDemo.NUMBER; i++) {
map.get(key);
}
countDownLatch.countDown();
}
} public class ConcurrentHashMapDemo {
static final int THREADNUMBER = 50;
static final int NUMBER = 5000; public static void main(String[] args) throws Exception {
Map<String, Integer> hashmapSync = Collections
.synchronizedMap(new HashMap<String, Integer>());
Map<String, Integer> concurrentHashMap = new ConcurrentHashMap<String, Integer>();
Map<String, Integer> hashtable = new Hashtable<String, Integer>();
long totalA = 0L;
long totalB = 0L;
long totalC = 0L;
for (int i = 0; i <= 100; i++) {
totalA += put(hashmapSync);
totalB += put(concurrentHashMap);
totalC += put(hashtable);
}
System.out.println("put time HashMapSync = " + totalA + "ms.");
System.out.println("put time ConcurrentHashMap = " + totalB + "ms.");
System.out.println("put time Hashtable = " + totalC + "ms.");
totalA = 0;
totalB = 0;
totalC = 0;
for (int i = 0; i <= 10; i++) {
totalA += get(hashmapSync);
totalB += get(concurrentHashMap);
totalC += get(hashtable);
}
System.out.println("get time HashMapSync=" + totalA + "ms.");
System.out.println("get time ConcurrentHashMap=" + totalB + "ms.");
System.out.println("get time Hashtable=" + totalC + "ms.");
} public static long put(Map<String, Integer> map) throws Exception {
long start = System.currentTimeMillis();
CountDownLatch countDownLatch = new CountDownLatch(THREADNUMBER);
for (int i = 0; i < THREADNUMBER; i++) {
new PutThread(map, countDownLatch).start();
}
countDownLatch.await();
return System.currentTimeMillis() - start;
} public static long get(Map<String, Integer> map) throws Exception {
long start = System.currentTimeMillis();
CountDownLatch countDownLatch = new CountDownLatch(THREADNUMBER);
for (int i = 0; i < THREADNUMBER; i++) {
new GetThread(map, countDownLatch).start();
}
countDownLatch.await();
return System.currentTimeMillis() - start;
}
}

运行结果(某一次):

put time HashMapSync = 5489ms.
put time ConcurrentHashMap = 1433ms.
put time Hashtable = 5331ms.
get time HashMapSync=491ms.
get time ConcurrentHashMap=101ms.
get time Hashtable=462ms.

  说明:程序中对HashMap进行了封装,将其封装为线程安全的集合,而ConcurrentHashMap是线程安全的,Hashtable也是线程安全的,但是,其并发效率并不搞,可以看到,ConcurrentHashMap的性能相比HashMap的线程安全同步集合和Hashtable而言,性能都要高出不少。原因是经过Collections封装的线程安全的HashMap和Hashtable都是对整个结构加锁,而ConcurrentHashMap是对每一个桶单独进行锁操作,不同的桶之间的操作不会相互影响,可以并发执行。因此,其速度会快很多。

五、总结

  JDK1.8的ConcurrentHashMap相比之前版本的ConcurrentHashMap有很了大的改进与不同,只有通过分析源码才能领略代码的魅力,当然,此次的分析仅仅涉及到了主要的函数,对于其他的函数,读者可以自行分析,谢谢各位园友的观看~

下面一篇文章写得非常好,推荐一读:http://www.cnblogs.com/huaizuo/archive/2016/04/20/5413069.html

转载:https://www.cnblogs.com/leesf456/p/5453341.html

【JUC】JDK1.8源码分析之ConcurrentHashMap的更多相关文章

  1. 【JUC】JDK1.8源码分析之ConcurrentHashMap(一)

    一.前言 最近几天忙着做点别的东西,今天终于有时间分析源码了,看源码感觉很爽,并且发现ConcurrentHashMap在JDK1.8版本与之前的版本在并发控制上存在很大的差别,很有必要进行认真的分析 ...

  2. 【JUC】JDK1.8源码分析之ArrayBlockingQueue(三)

    一.前言 在完成Map下的并发集合后,现在来分析ArrayBlockingQueue,ArrayBlockingQueue可以用作一个阻塞型队列,支持多任务并发操作,有了之前看源码的积累,再看Arra ...

  3. 【1】【JUC】JDK1.8源码分析之ArrayBlockingQueue,LinkedBlockingQueue

    概要: ArrayBlockingQueue的内部是通过一个可重入锁ReentrantLock和两个Condition条件对象来实现阻塞 注意这两个Condition即ReentrantLock的Co ...

  4. 【1】【JUC】JDK1.8源码分析之ReentrantLock

    概要: ReentrantLock类内部总共存在Sync.NonfairSync.FairSync三个类,NonfairSync与FairSync类继承自Sync类,Sync类继承自AbstractQ ...

  5. 【集合框架】JDK1.8源码分析HashSet && LinkedHashSet(八)

    一.前言 分析完了List的两个主要类之后,我们来分析Set接口下的类,HashSet和LinkedHashSet,其实,在分析完HashMap与LinkedHashMap之后,再来分析HashSet ...

  6. 【集合框架】JDK1.8源码分析之HashMap(一) 转载

    [集合框架]JDK1.8源码分析之HashMap(一)   一.前言 在分析jdk1.8后的HashMap源码时,发现网上好多分析都是基于之前的jdk,而Java8的HashMap对之前做了较大的优化 ...

  7. 【集合框架】JDK1.8源码分析之ArrayList详解(一)

    [集合框架]JDK1.8源码分析之ArrayList详解(一) 一. 从ArrayList字表面推测 ArrayList类的命名是由Array和List单词组合而成,Array的中文意思是数组,Lis ...

  8. 集合之TreeSet(含JDK1.8源码分析)

    一.前言 前面分析了Set接口下的hashSet和linkedHashSet,下面接着来看treeSet,treeSet的底层实现是基于treeMap的. 四个关注点在treeSet上的答案 二.tr ...

  9. 集合之LinkedHashSet(含JDK1.8源码分析)

    一.前言 上篇已经分析了Set接口下HashSet,我们发现其操作都是基于hashMap的,接下来看LinkedHashSet,其底层实现都是基于linkedHashMap的. 二.linkedHas ...

随机推荐

  1. 导出EXCEL(带数据)

    /* * 导出EXCEL * @param req * @param resp * @param model * @param info * @return */ @RequestMapping(va ...

  2. NX二次开发-基于NX开发向导模板的NX对Excel读写操作(OLE方式(COM组件))

    在看这个博客前,请读者先去完整看完:NX二次开发-基于MFC界面的NX对Excel读写操作(OLE方式(COM组件))https://ufun-nxopen.blog.csdn.net/article ...

  3. Array.prototype.slice.call()等几种将arguments对象转换成数组对象的方法

    网站搬迁,给你带来的不便敬请谅解! http://www.suanliutudousi.com/2017/10/10/array-prototype-slice-call%E7%AD%89%E5%87 ...

  4. 2018年第九届蓝桥杯B组第四题:摔手机题解

    摔手机 摔手机 动态规划  在蓝桥杯的时候遇到一次 当时没有做对  看了题解也没明白  如今再次遇到这个类似的题目 于是拿出来补补吧 摔手机题目如下: 星球的居民脾气不太好,但好在他们生气的时候唯一的 ...

  5. vue-router 使用二级路由去实现子组件的显示和隐藏

    在需求中有一个这样的情况:一个组件在主组件和另外的组件中引用,且点击主组件和这个组件分别有相应得切换事件. 一开始的时候我是没有划分组件,把它们放到主组件内,这样便于切换,但是主主件内有独立的部分需要 ...

  6. UTF-8 - ASCII 兼容的多字节 Unicode 编码

    描述 The Unicode 字符集使用的是 16 位(双字节)码.最普遍的 Unicode 编码方法( UCS-2) 由一个 16 位双字序列组成.这样的字符串中包括了的一些如‘\0’或‘/’这样的 ...

  7. UVA11427 Expect the Expected 概率dp+全概率公式

    题目传送门 题意:小明每晚都玩游戏,每一盘赢的概率都是p,如果第一盘就赢了,那么就去睡觉,第二天继续玩:否则继续玩,玩到赢的比例大于p才去睡:如果一直玩了n盘还没完成,就再也不玩了:问他玩游戏天数的期 ...

  8. 发现一个新的远程软件 gotohttp

    之前直到远程桌面连接是TeamViewer 替换的原因是: 被控制端版本 11.0.x (很久以前安装的),而我本地的Teamviewer是 14.x, 去连接,好像提示被控制端的版本太低:本地使用 ...

  9. loj2000[SDOI2017]数字表格

    题意:f为Fibnacci数列.求$\prod_{1<=i<=n,1<=j<=m} f[gcd(i,j)]$. n,m<=1e6. 标程: #include<bit ...

  10. php上传(一)

    php上传基础知识总结 1.文件上传 1>文件上传的原理:将客户端上的文件通过浏览器上传到服务器上, 在将服务器上的文件移动到指定目录. 2>客户端的配置 表单页面,浏览框 method= ...