par(ask=TRUE)
opar <- par(no.readonly=TRUE) # make a copy of current settings attach(mtcars) # be sure to execute this line plot(wt, mpg)
abline(lm(mpg~wt))
title("Regression of MPG on Weight")

# Input data for drug example
dose <- c(20, 30, 40, 45, 60)
drugA <- c(16, 20, 27, 40, 60)
drugB <- c(15, 18, 25, 31, 40) plot(dose, drugA, type="b") opar <- par(no.readonly=TRUE) # make a copy of current settings
par(lty=2, pch=17) # change line type and symbol
plot(dose, drugA, type="b") # generate a plot
par(opar) # restore the original settings plot(dose, drugA, type="b", lty=3, lwd=3, pch=15, cex=2)

# choosing colors
library(RColorBrewer)
n <- 7
mycolors <- brewer.pal(n, "Set1")
barplot(rep(1,n), col=mycolors) n <- 10
mycolors <- rainbow(n)
pie(rep(1, n), labels=mycolors, col=mycolors)
mygrays <- gray(0:n/n)
pie(rep(1, n), labels=mygrays, col=mygrays)

dose <- c(20, 30, 40, 45, 60)
drugA <- c(16, 20, 27, 40, 60)
drugB <- c(15, 18, 25, 31, 40)
opar <- par(no.readonly=TRUE)
par(pin=c(2, 3))
par(lwd=2, cex=1.5)
par(cex.axis=.75, font.axis=3)
plot(dose, drugA, type="b", pch=19, lty=2, col="red")
plot(dose, drugB, type="b", pch=23, lty=6, col="blue", bg="green")
par(opar)
# Adding text, lines, and symbols
plot(dose, drugA, type="b",
col="red", lty=2, pch=2, lwd=2,
main="Clinical Trials for Drug A",
sub="This is hypothetical data",
xlab="Dosage", ylab="Drug Response",
xlim=c(0, 60), ylim=c(0, 70))

x <- c(1:10)
y <- x
z <- 10/x
opar <- par(no.readonly=TRUE)
par(mar=c(5, 4, 4, 8) + 0.1)
plot(x, y, type="b",
pch=21, col="red",
yaxt="n", lty=3, ann=FALSE)
lines(x, z, type="b", pch=22, col="blue", lty=2)
axis(2, at=x, labels=x, col.axis="red", las=2)
axis(4, at=z, labels=round(z, digits=2),
col.axis="blue", las=2, cex.axis=0.7, tck=-.01)
mtext("y=1/x", side=4, line=3, cex.lab=1, las=2, col="blue")
title("An Example of Creative Axes",
xlab="X values",
ylab="Y=X")
par(opar)

dose <- c(20, 30, 40, 45, 60)
drugA <- c(16, 20, 27, 40, 60)
drugB <- c(15, 18, 25, 31, 40)
opar <- par(no.readonly=TRUE)
par(lwd=2, cex=1.5, font.lab=2)
plot(dose, drugA, type="b",
pch=15, lty=1, col="red", ylim=c(0, 60),
main="Drug A vs. Drug B",
xlab="Drug Dosage", ylab="Drug Response")
lines(dose, drugB, type="b",
pch=17, lty=2, col="blue")
abline(h=c(30), lwd=1.5, lty=2, col="gray")
library(Hmisc)
minor.tick(nx=3, ny=3, tick.ratio=0.5)
legend("topleft", inset=.05, title="Drug Type", c("A","B"),
lty=c(1, 2), pch=c(15, 17), col=c("red", "blue"))
par(opar)

attach(mtcars)
plot(wt, mpg,
main="Mileage vs. Car Weight",
xlab="Weight", ylab="Mileage",
pch=18, col="blue")
text(wt, mpg,
row.names(mtcars),
cex=0.6, pos=4, col="red")
detach(mtcars)

# View font families
opar <- par(no.readonly=TRUE)
par(cex=1.5)
plot(1:7,1:7,type="n")
text(3,3,"Example of default text")
text(4,4,family="mono","Example of mono-spaced text")
text(5,5,family="serif","Example of serif text")
par(opar)

# Combining graphs
attach(mtcars)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
plot(wt,mpg, main="Scatterplot of wt vs. mpg")
plot(wt,disp, main="Scatterplot of wt vs. disp")
hist(wt, main="Histogram of wt")
boxplot(wt, main="Boxplot of wt")
par(opar)
detach(mtcars)

attach(mtcars)
opar <- par(no.readonly=TRUE)
par(mfrow=c(3,1))
hist(wt)
hist(mpg)
hist(disp)
par(opar)
detach(mtcars)

attach(mtcars)
layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE))
hist(wt)
hist(mpg)
hist(disp)
detach(mtcars)

attach(mtcars)
layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE),
widths=c(3, 1), heights=c(1, 2))
hist(wt)
hist(mpg)
hist(disp)
detach(mtcars)

# Listing 3.4 - Fine placement of figures in a graph
opar <- par(no.readonly=TRUE)
par(fig=c(0, 0.8, 0, 0.8))
plot(mtcars$mpg, mtcars$wt,
xlab="Miles Per Gallon",
ylab="Car Weight")
par(fig=c(0, 0.8, 0.55, 1), new=TRUE)
boxplot(mtcars$mpg, horizontal=TRUE, axes=FALSE)
par(fig=c(0.65, 1, 0, 0.8), new=TRUE)
boxplot(mtcars$wt, axes=FALSE)
mtext("Enhanced Scatterplot", side=3, outer=TRUE, line=-3)
par(opar)

吴裕雄--天生自然 R语言数据可视化绘图(1)的更多相关文章

  1. 吴裕雄--天生自然 R语言数据可视化绘图(3)

    par(ask=TRUE) opar <- par(no.readonly=TRUE) # record current settings # Listing 11.1 - A scatter ...

  2. 吴裕雄--天生自然 R语言数据可视化绘图(4)

    par(ask=TRUE) # Basic scatterplot library(ggplot2) ggplot(data=mtcars, aes(x=wt, y=mpg)) + geom_poin ...

  3. 吴裕雄--天生自然 R语言数据可视化绘图(2)

    par(ask=TRUE) opar <- par(no.readonly=TRUE) # save original parameter settings library(vcd) count ...

  4. 吴裕雄--天生自然 R语言开发学习:R语言的安装与配置

    下载R语言和开发工具RStudio安装包 先安装R

  5. 吴裕雄--天生自然 R语言开发学习:数据集和数据结构

    数据集的概念 数据集通常是由数据构成的一个矩形数组,行表示观测,列表示变量.表2-1提供了一个假想的病例数据集. 不同的行业对于数据集的行和列叫法不同.统计学家称它们为观测(observation)和 ...

  6. 吴裕雄--天生自然 R语言开发学习:导入数据

    2.3.6 导入 SPSS 数据 IBM SPSS数据集可以通过foreign包中的函数read.spss()导入到R中,也可以使用Hmisc 包中的spss.get()函数.函数spss.get() ...

  7. 吴裕雄--天生自然 R语言开发学习:处理缺失数据的高级方法(续一)

    #-----------------------------------# # R in Action (2nd ed): Chapter 18 # # Advanced methods for mi ...

  8. 吴裕雄--天生自然 R语言开发学习:R语言的简单介绍和使用

    假设我们正在研究生理发育问 题,并收集了10名婴儿在出生后一年内的月龄和体重数据(见表1-).我们感兴趣的是体重的分 布及体重和月龄的关系. 可以使用函数c()以向量的形式输入月龄和体重数据,此函 数 ...

  9. 吴裕雄--天生自然 R语言开发学习:使用键盘、带分隔符的文本文件输入数据

    R可从键盘.文本文件.Microsoft Excel和Access.流行的统计软件.特殊格 式的文件.多种关系型数据库管理系统.专业数据库.网站和在线服务中导入数据. 使用键盘了.有两种常见的方式:用 ...

随机推荐

  1. python之路:day2

    本节内容 列表.元组操作 字符串操作 字典操作 集合操作 文件操作 字符编码与转码 1. 列表.元组操作 列表是我们最以后最常用的数据类型之一,通过列表可以对数据实现最方便的存储.修改等操作 定义列表 ...

  2. java web 各个文件夹命名原因

    今天突然被同学问然后就发现,自己有很多的疑问: (1) 为什么servlet的配置文件,命名为 web.xml , 内部是如何读取的,原因就是他内度的工作原理 (2) webINF Src 文件为什么 ...

  3. *args 和 **kwargs 的区别

    截取百度里的两个答案: 这是Python函数可变参数 args及kwargs *args表示任何多个无名参数,它是一个tuple **kwargs表示关键字参数,它是一个dict 测试代码如下: de ...

  4. Codeforces_798

    A.暴力把每个位置的字符改成另外25个字符,判断是否回文. #include<bits/stdc++.h> using namespace std; string s; int main( ...

  5. POJ_3663_贪心

    题目描述: 给你一堆数和一个限定的空间大小,要求求出两个数的和小于等于空间大小的对数. 思路: 贪心,先给一堆数从大到小排序. 第一个数取数组第一个,第二个数从第二个开始依次往后取,只要某个第二个数满 ...

  6. WeChall_Training: ASCII (Training, Encoding)

    In a computer, you can only work with numbers.In this challenge you have to decode the following mes ...

  7. 本地开发环境伪装成SSL连接的实现

    本地ssl开发测试实现1,在外网服务器上使用测试域名和t.test.cn,用let's encrypt申请 证书并正常运行2,修改本地服务器host文件,将t.kennylee.vip指向127.0. ...

  8. 阿里云服务器ECS Ubuntu18.04 建立新用户

    昨天花了好长时间终于把界面功能弄好了,今天找时间再折腾一下: 1.建立新的用户: ssh连接上,用以下命令建立新用户,并设置密码: 创建普通用户“myname”成功,接下来为用户“myname”赋予s ...

  9. Linux恢复删除的文件

    linux恢复删除的文件 先介绍下一些文件的基本概念: ·         文件实际上是一个指向inode的链接, inode链接包含了文件的所有属性, 比如权限和所有者, 数据块地址(文件存储在磁盘 ...

  10. 解决mysql登录报错ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)问题

    问题描述: 在ubuntu14.04上安装完MYSQL后,MYSQL默认给分配了一个默认密码,但当自己在终端上使用默认密码登录的时候,总会提示一个授权失败的错误. 报错信息:Access denied ...