一个arctan积分的两种解法
\[\Large\int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}\mathrm{d}x\]
\(\Large\mathbf{Solution:}\)
首先第一种做法,含参积分.不多说直接上图

第二种方法则是利用级数,易知
\[\begin{align*}
\int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}\mathrm{d}x&=\int_0^{\pi/2}\arctan(\sin(x))\,\mathrm{d}x\\&=\sum_{k=0}^\infty\frac{(-1)^k}{2k+1}\int_0^{\pi/2}\sin^{2k+1}(x)\,\mathrm{d}x\\
&=\sum_{k=0}^\infty\frac{(-1)^k}{2k+1}\frac{2^k\,k!}{(2k+1)!!}\\
&=\sum_{k=0}^\infty\frac{(-1)^k}{(2k+1)^2}\frac{4^k}{\displaystyle\binom{2k}{k}}
\end{align*}\]
下面来解决最后一个级数,利用Beta函数我们可以得到以下等式
\[\frac1{\displaystyle\binom{2n}{n}}=(2n+1)\int_0^1t^n(1-t)^n\mathrm{d}t\]
所以
\[\begin{align*}
\sum_{n=0}^\infty\frac{(-4)^nx^{2n}}{(2n+1)\displaystyle\binom{2n}{n}}
&=\int_0^1\frac1{1+4x^2t(1-t)}\mathrm{d}t\\
&=\int_0^1\frac1{1+x^2-x^2(2t-1)^2}\mathrm{d}t\\
&=\frac1{1+x^2}\int_0^1\frac1{1-\dfrac{x^2}{1+x^2}(2t-1)^2}\mathrm{d}t\\
&=\frac1{1+x^2}\int_{-1}^1\frac1{1-\dfrac{x^2}{1+x^2}t^2}\frac12\mathrm{d}t\\
&=\frac1{2x\sqrt{1+x^2}}\int_{-x/\sqrt{1+x^2}}^{x/\sqrt{1+x^2}}\frac1{1-t^2}\mathrm{d}t\\
&=\frac1{x\sqrt{1+x^2}}\mathrm{arctanh}\left(\frac{x}{\sqrt{1+x^2}}\right)\\
&=\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x)
\end{align*}\]
两边积分可以得到
\[\begin{align*}
\sum_{n=0}^\infty\frac{(-4)^n}{(2n+1)^2\displaystyle \binom{2n}{n}}
&=\int_0^1\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x)\,\mathrm{d}x\\
&=-\int_0^1\mathrm{arcsinh}(x)\frac1{\sqrt{\vphantom{\big|}1+1/x^2}}\mathrm{d}\frac1x\\
&=-\int_0^1\mathrm{arcsinh}(x)\,\mathrm{d}\,\mathrm{arcsinh}\left(\frac1x\right)\\
&=-\,\mathrm{arcsinh}^2(1)+\int_0^1\mathrm{arcsinh}\left(\frac1x\right)\,\mathrm{d}\,\mathrm{arcsinh}(x)\\
&=-\,\mathrm{arcsinh}^2(1)-\int_1^\infty\mathrm{arcsinh}(x)\,\mathrm{d}\,\mathrm{arcsinh}\left(\frac1x\right)\\
&=-\,\mathrm{arcsinh}^2(1)+\int_1^\infty\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x)\,\mathrm{d}x\\
&=-\frac12\,\mathrm{arcsinh}^2(1)+\frac12\int_0^\infty\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x)\,\mathrm{d}x\\
&=-\frac12\,\mathrm{arcsinh}^2(1)+\frac12\int_0^\infty\frac{t\,\mathrm{d}t}{\sinh(t)}
\end{align*}\]
其中
\[\int_0^\infty\frac{t\,\mathrm{dt}}{\sinh(t)}=\int_0^\infty\sum_{k=0}^\infty2t\,e^{-(2k+1)t}\,\mathrm{d}t=\sum_{k=0}^\infty\frac2{(2k+1)^2}=\frac{\pi^2}4\]
所以
\[\color{red}{\sum_{n=0}^\infty\frac{(-4)^n}{(2n+1)^2\displaystyle \binom{2n}{n}}=\frac{\pi^2}8-\frac12\mathrm{arcsinh}^2(1)}\]
即
\[\Large\boxed{\displaystyle \int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}\, \mathrm{d}x=\color{blue}{\frac{\pi^2}8-\frac12\mathrm{arcsinh}^2(1)}}\]
一个arctan积分的两种解法的更多相关文章
- Java描述表达式求值的两种解法:双栈结构和二叉树
Java描述表达式求值的两种解法:双栈结构和二叉树 原题大意:表达式求值 求一个非负整数四则混合运算且含嵌套括号表达式的值.如: # 输入: 1+2*(6/2)-4 # 输出: 3.0 数据保证: 保 ...
- 51nod 1165 整边直角三角形的数量(两种解法)
链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1165 直角三角形,三条边的长度都是整数.给出周长N,求符合条件的三角形数量. ...
- ORACLE 查询一个数据表后通过遍历再插入另一个表中的两种写法
ORACLE 查询一个数据表后通过遍历再插入另一个表中的两种写法 语法 第一种: 通过使用Oracle语句块 --指定文档所有部门都能查看 declare cursor TABLE_DEPT and ...
- 关于Euler-Poisson积分的几种解法
来源:https://www.cnblogs.com/Renascence-5/p/5432211.html 方法1:因为积分值只与被积函数和积分域有关,与积分变量无关,所以\[I^{2}=\left ...
- 一个ListView怎么展示两种样式
private class MyBaseMsgAdapter extends BaseAdapter { //获取数据适配器中条目类型的总数,修改成两种(纯文本,输入+文字) @Override pu ...
- .NET一个线程更新另一个线程的UI(两种实现方法及若干简化)
Winform中的控件是绑定到特定的线程的(一般是主线程),这意味着从另一个线程更新主线程的控件不能直接调用该控件的成员. 控件绑定到特定的线程这个概念如下: 为了从另一个线程更新主线程的Window ...
- Letter Combinations of a Phone Number:深度优先和广度优先两种解法
Letter Combinations of a Phone Number Given a digit string, return all possible letter combinations ...
- leetcode-91-解码方法(动态规划和递归两种解法)
题目描述: 一条包含字母 A-Z 的消息通过以下方式进行了编码: 'A' -> 1 'B' -> 2 ... 'Z' -> 26 给定一个只包含数字的非空字符串,请计算解码方法的总数 ...
- POJ 1157 LITTLE SHOP OF FLOWERS (超级经典dp,两种解法)
You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flo ...
随机推荐
- ajax异步获取请求,获得json数组后对数组的遍历
如果响应数据是以html的形式发出来的,即 response.setContentType("text/html;charset=utf-8"); 那么一般用下面这种方式,但是要注 ...
- testng如何实现并发
参考: https://www.cnblogs.com/znicy/p/6534893.html
- 一文复习JSP内容
概念: JSP 全名为 Java Server Pages, 中文名叫 java 服务器页面, 其根 本是一个简化的 Servlet 设计, 它是由 Sun Microsystems 公司 倡导. 许 ...
- eclipse报错:unable to install breakpoint in .......due to missing line number attributes
报错信息如下: 解决方案方案1.把断点都干掉,再启动.应该是代码更新后,断点位置没有代码了或位置改变了. 方案2.在Eclipse - Preferences - Java - Complier 下 ...
- jquery 复制
Jq将字符串复制粘贴到剪贴板 第一种: 自己测试时 只适合于input 和textarea 但是针对于其他标签的复制就不能用了.代码如下: <!DOCTYPE html> < ...
- awk基本介绍
AWK 是一种用于处理文本的编程语言工具.awk经过改进生成的新的版本nawk,gawk,现在默认linux系统下日常使用的是gawk,用命令可以查看正在应用的awk的来源(ls -l /bin/aw ...
- python浅析对return的理解
函数外部的代码要想获取函数的执行结果,就可以在函数里面用return语句,把结果返回. return 代表一个函数的终止,如果return 后面带一个print 或者return ,则后面的不执行 ...
- django ForeignKey ManyToMany 前后端联动
总结 外键基本和普通的字段是一样的 多对多 获取 getlist() 更新 clear() add() remove() 前端和后端是通过字符串沟通的,所以使用ajax的时候如果是数据类型,记得要JS ...
- 神经网络之反向传播算法(BP)公式推导(超详细)
反向传播算法详细推导 反向传播(英语:Backpropagation,缩写为BP)是"误差反向传播"的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见 ...
- Java_Habse_shell
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.*; import org.apache.had ...