\[\Large\int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}\mathrm{d}x\]


\(\Large\mathbf{Solution:}\)
首先第一种做法,含参积分.不多说直接上图


第二种方法则是利用级数,易知
\[\begin{align*}
\int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}\mathrm{d}x&=\int_0^{\pi/2}\arctan(\sin(x))\,\mathrm{d}x\\&=\sum_{k=0}^\infty\frac{(-1)^k}{2k+1}\int_0^{\pi/2}\sin^{2k+1}(x)\,\mathrm{d}x\\
&=\sum_{k=0}^\infty\frac{(-1)^k}{2k+1}\frac{2^k\,k!}{(2k+1)!!}\\
&=\sum_{k=0}^\infty\frac{(-1)^k}{(2k+1)^2}\frac{4^k}{\displaystyle\binom{2k}{k}}
\end{align*}\]
下面来解决最后一个级数,利用Beta函数我们可以得到以下等式
\[\frac1{\displaystyle\binom{2n}{n}}=(2n+1)\int_0^1t^n(1-t)^n\mathrm{d}t\]
所以
\[\begin{align*}
\sum_{n=0}^\infty\frac{(-4)^nx^{2n}}{(2n+1)\displaystyle\binom{2n}{n}}
&=\int_0^1\frac1{1+4x^2t(1-t)}\mathrm{d}t\\
&=\int_0^1\frac1{1+x^2-x^2(2t-1)^2}\mathrm{d}t\\
&=\frac1{1+x^2}\int_0^1\frac1{1-\dfrac{x^2}{1+x^2}(2t-1)^2}\mathrm{d}t\\
&=\frac1{1+x^2}\int_{-1}^1\frac1{1-\dfrac{x^2}{1+x^2}t^2}\frac12\mathrm{d}t\\
&=\frac1{2x\sqrt{1+x^2}}\int_{-x/\sqrt{1+x^2}}^{x/\sqrt{1+x^2}}\frac1{1-t^2}\mathrm{d}t\\
&=\frac1{x\sqrt{1+x^2}}\mathrm{arctanh}\left(\frac{x}{\sqrt{1+x^2}}\right)\\
&=\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x)
\end{align*}\]
两边积分可以得到
\[\begin{align*}
\sum_{n=0}^\infty\frac{(-4)^n}{(2n+1)^2\displaystyle \binom{2n}{n}}
&=\int_0^1\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x)\,\mathrm{d}x\\
&=-\int_0^1\mathrm{arcsinh}(x)\frac1{\sqrt{\vphantom{\big|}1+1/x^2}}\mathrm{d}\frac1x\\
&=-\int_0^1\mathrm{arcsinh}(x)\,\mathrm{d}\,\mathrm{arcsinh}\left(\frac1x\right)\\
&=-\,\mathrm{arcsinh}^2(1)+\int_0^1\mathrm{arcsinh}\left(\frac1x\right)\,\mathrm{d}\,\mathrm{arcsinh}(x)\\
&=-\,\mathrm{arcsinh}^2(1)-\int_1^\infty\mathrm{arcsinh}(x)\,\mathrm{d}\,\mathrm{arcsinh}\left(\frac1x\right)\\
&=-\,\mathrm{arcsinh}^2(1)+\int_1^\infty\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x)\,\mathrm{d}x\\
&=-\frac12\,\mathrm{arcsinh}^2(1)+\frac12\int_0^\infty\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x)\,\mathrm{d}x\\
&=-\frac12\,\mathrm{arcsinh}^2(1)+\frac12\int_0^\infty\frac{t\,\mathrm{d}t}{\sinh(t)}
\end{align*}\]
其中
\[\int_0^\infty\frac{t\,\mathrm{dt}}{\sinh(t)}=\int_0^\infty\sum_{k=0}^\infty2t\,e^{-(2k+1)t}\,\mathrm{d}t=\sum_{k=0}^\infty\frac2{(2k+1)^2}=\frac{\pi^2}4\]
所以
\[\color{red}{\sum_{n=0}^\infty\frac{(-4)^n}{(2n+1)^2\displaystyle \binom{2n}{n}}=\frac{\pi^2}8-\frac12\mathrm{arcsinh}^2(1)}\]

\[\Large\boxed{\displaystyle \int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}\, \mathrm{d}x=\color{blue}{\frac{\pi^2}8-\frac12\mathrm{arcsinh}^2(1)}}\]

一个arctan积分的两种解法的更多相关文章

  1. Java描述表达式求值的两种解法:双栈结构和二叉树

    Java描述表达式求值的两种解法:双栈结构和二叉树 原题大意:表达式求值 求一个非负整数四则混合运算且含嵌套括号表达式的值.如: # 输入: 1+2*(6/2)-4 # 输出: 3.0 数据保证: 保 ...

  2. 51nod 1165 整边直角三角形的数量(两种解法)

    链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1165 直角三角形,三条边的长度都是整数.给出周长N,求符合条件的三角形数量. ...

  3. ORACLE 查询一个数据表后通过遍历再插入另一个表中的两种写法

    ORACLE 查询一个数据表后通过遍历再插入另一个表中的两种写法 语法 第一种: 通过使用Oracle语句块  --指定文档所有部门都能查看 declare cursor TABLE_DEPT and ...

  4. 关于Euler-Poisson积分的几种解法

    来源:https://www.cnblogs.com/Renascence-5/p/5432211.html 方法1:因为积分值只与被积函数和积分域有关,与积分变量无关,所以\[I^{2}=\left ...

  5. 一个ListView怎么展示两种样式

    private class MyBaseMsgAdapter extends BaseAdapter { //获取数据适配器中条目类型的总数,修改成两种(纯文本,输入+文字) @Override pu ...

  6. .NET一个线程更新另一个线程的UI(两种实现方法及若干简化)

    Winform中的控件是绑定到特定的线程的(一般是主线程),这意味着从另一个线程更新主线程的控件不能直接调用该控件的成员. 控件绑定到特定的线程这个概念如下: 为了从另一个线程更新主线程的Window ...

  7. Letter Combinations of a Phone Number:深度优先和广度优先两种解法

    Letter Combinations of a Phone Number Given a digit string, return all possible letter combinations ...

  8. leetcode-91-解码方法(动态规划和递归两种解法)

    题目描述: 一条包含字母 A-Z 的消息通过以下方式进行了编码: 'A' -> 1 'B' -> 2 ... 'Z' -> 26 给定一个只包含数字的非空字符串,请计算解码方法的总数 ...

  9. POJ 1157 LITTLE SHOP OF FLOWERS (超级经典dp,两种解法)

    You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flo ...

随机推荐

  1. Equalize

    You are given two binary strings aa and bb of the same length. You can perform the following two ope ...

  2. 苹果公司以注重客户隐私闻名世界,但为什么Siri泄露了我的秘密?

    编辑 | 于斌 出品 | 于见(mpyujian) 苹果的Siri因为其作为智能语音助手,方便人们打电话.发信息等功能,被人们所喜爱,但是最近,Siri好像有一些问题,让我们怀疑这位"小伙伴 ...

  3. SSM项目 以及 springboot 中引入swagger2的方法

    swagger2是一个非常好用的接口文档,在开发的过程中方便前后端接口的交接. 下面我们就来讲讲在使用java时,分别在SSM框架,以及springboot+mybatis框架中引入swagger2的 ...

  4. Python反编译调用有道翻译(附完整代码)

         网易有道翻译是一款非常优秀的产品,他们的神经网络翻译真的挺无敌.无奈有道客户端实在是太难用了,而且在某些具体场景 (比如对网站进行批量翻译) 无法使用,而有道的云服务又特别的贵,一般人是无法 ...

  5. QT+VS后中文字符乱码问题

    在VS中写QT项目会出现中文乱码现象,尤其是控件的中文乱码以及qDebug()时候中文乱码通用的解决办法: 在头文件(.h)前面加上如下代码: #ifdef WIN32 #pragma executi ...

  6. 计算几何-HPI

    This article is made by Jason-Cow.Welcome to reprint.But please post the article's address.   在线笛卡尔坐 ...

  7. opencv:图像去噪(椒盐噪声)

    #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...

  8. kali 安装与配置

    打开虚拟机 新建一个虚拟机 导入虚拟文件 然后进行下面的步骤 开启虚拟机 语言:中文简体 地区: 中国 语言: 汉语 自动安装 配置网络 配置域名 填写密码(两次一致) 自动校对时钟 使用整个磁盘 选 ...

  9. Python类属性和类方法

    01. 类的结构 1.1 术语 —— 实例 使用面相对象开发,第 1 步 是设计 类 使用 类名() 创建对象,创建对象 的动作有两步: 1) 在内存中为对象 分配空间 2) 调用初始化方法 __in ...

  10. 列表与数组 Perl入门第三章

    列表List 是标量的有序集合.数组array则是存储列表的变量.数组/列表的每个元素element都是单独的标量变量,拥有独立的标量值. 1. 数组: 访问数组中的元素: $fred[0]=&quo ...