一个arctan积分的两种解法
\[\Large\int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}\mathrm{d}x\]
\(\Large\mathbf{Solution:}\)
首先第一种做法,含参积分.不多说直接上图
第二种方法则是利用级数,易知
\[\begin{align*}
\int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}\mathrm{d}x&=\int_0^{\pi/2}\arctan(\sin(x))\,\mathrm{d}x\\&=\sum_{k=0}^\infty\frac{(-1)^k}{2k+1}\int_0^{\pi/2}\sin^{2k+1}(x)\,\mathrm{d}x\\
&=\sum_{k=0}^\infty\frac{(-1)^k}{2k+1}\frac{2^k\,k!}{(2k+1)!!}\\
&=\sum_{k=0}^\infty\frac{(-1)^k}{(2k+1)^2}\frac{4^k}{\displaystyle\binom{2k}{k}}
\end{align*}\]
下面来解决最后一个级数,利用Beta函数我们可以得到以下等式
\[\frac1{\displaystyle\binom{2n}{n}}=(2n+1)\int_0^1t^n(1-t)^n\mathrm{d}t\]
所以
\[\begin{align*}
\sum_{n=0}^\infty\frac{(-4)^nx^{2n}}{(2n+1)\displaystyle\binom{2n}{n}}
&=\int_0^1\frac1{1+4x^2t(1-t)}\mathrm{d}t\\
&=\int_0^1\frac1{1+x^2-x^2(2t-1)^2}\mathrm{d}t\\
&=\frac1{1+x^2}\int_0^1\frac1{1-\dfrac{x^2}{1+x^2}(2t-1)^2}\mathrm{d}t\\
&=\frac1{1+x^2}\int_{-1}^1\frac1{1-\dfrac{x^2}{1+x^2}t^2}\frac12\mathrm{d}t\\
&=\frac1{2x\sqrt{1+x^2}}\int_{-x/\sqrt{1+x^2}}^{x/\sqrt{1+x^2}}\frac1{1-t^2}\mathrm{d}t\\
&=\frac1{x\sqrt{1+x^2}}\mathrm{arctanh}\left(\frac{x}{\sqrt{1+x^2}}\right)\\
&=\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x)
\end{align*}\]
两边积分可以得到
\[\begin{align*}
\sum_{n=0}^\infty\frac{(-4)^n}{(2n+1)^2\displaystyle \binom{2n}{n}}
&=\int_0^1\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x)\,\mathrm{d}x\\
&=-\int_0^1\mathrm{arcsinh}(x)\frac1{\sqrt{\vphantom{\big|}1+1/x^2}}\mathrm{d}\frac1x\\
&=-\int_0^1\mathrm{arcsinh}(x)\,\mathrm{d}\,\mathrm{arcsinh}\left(\frac1x\right)\\
&=-\,\mathrm{arcsinh}^2(1)+\int_0^1\mathrm{arcsinh}\left(\frac1x\right)\,\mathrm{d}\,\mathrm{arcsinh}(x)\\
&=-\,\mathrm{arcsinh}^2(1)-\int_1^\infty\mathrm{arcsinh}(x)\,\mathrm{d}\,\mathrm{arcsinh}\left(\frac1x\right)\\
&=-\,\mathrm{arcsinh}^2(1)+\int_1^\infty\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x)\,\mathrm{d}x\\
&=-\frac12\,\mathrm{arcsinh}^2(1)+\frac12\int_0^\infty\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x)\,\mathrm{d}x\\
&=-\frac12\,\mathrm{arcsinh}^2(1)+\frac12\int_0^\infty\frac{t\,\mathrm{d}t}{\sinh(t)}
\end{align*}\]
其中
\[\int_0^\infty\frac{t\,\mathrm{dt}}{\sinh(t)}=\int_0^\infty\sum_{k=0}^\infty2t\,e^{-(2k+1)t}\,\mathrm{d}t=\sum_{k=0}^\infty\frac2{(2k+1)^2}=\frac{\pi^2}4\]
所以
\[\color{red}{\sum_{n=0}^\infty\frac{(-4)^n}{(2n+1)^2\displaystyle \binom{2n}{n}}=\frac{\pi^2}8-\frac12\mathrm{arcsinh}^2(1)}\]
即
\[\Large\boxed{\displaystyle \int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}\, \mathrm{d}x=\color{blue}{\frac{\pi^2}8-\frac12\mathrm{arcsinh}^2(1)}}\]
一个arctan积分的两种解法的更多相关文章
- Java描述表达式求值的两种解法:双栈结构和二叉树
Java描述表达式求值的两种解法:双栈结构和二叉树 原题大意:表达式求值 求一个非负整数四则混合运算且含嵌套括号表达式的值.如: # 输入: 1+2*(6/2)-4 # 输出: 3.0 数据保证: 保 ...
- 51nod 1165 整边直角三角形的数量(两种解法)
链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1165 直角三角形,三条边的长度都是整数.给出周长N,求符合条件的三角形数量. ...
- ORACLE 查询一个数据表后通过遍历再插入另一个表中的两种写法
ORACLE 查询一个数据表后通过遍历再插入另一个表中的两种写法 语法 第一种: 通过使用Oracle语句块 --指定文档所有部门都能查看 declare cursor TABLE_DEPT and ...
- 关于Euler-Poisson积分的几种解法
来源:https://www.cnblogs.com/Renascence-5/p/5432211.html 方法1:因为积分值只与被积函数和积分域有关,与积分变量无关,所以\[I^{2}=\left ...
- 一个ListView怎么展示两种样式
private class MyBaseMsgAdapter extends BaseAdapter { //获取数据适配器中条目类型的总数,修改成两种(纯文本,输入+文字) @Override pu ...
- .NET一个线程更新另一个线程的UI(两种实现方法及若干简化)
Winform中的控件是绑定到特定的线程的(一般是主线程),这意味着从另一个线程更新主线程的控件不能直接调用该控件的成员. 控件绑定到特定的线程这个概念如下: 为了从另一个线程更新主线程的Window ...
- Letter Combinations of a Phone Number:深度优先和广度优先两种解法
Letter Combinations of a Phone Number Given a digit string, return all possible letter combinations ...
- leetcode-91-解码方法(动态规划和递归两种解法)
题目描述: 一条包含字母 A-Z 的消息通过以下方式进行了编码: 'A' -> 1 'B' -> 2 ... 'Z' -> 26 给定一个只包含数字的非空字符串,请计算解码方法的总数 ...
- POJ 1157 LITTLE SHOP OF FLOWERS (超级经典dp,两种解法)
You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flo ...
随机推荐
- try catch 语句中有return 的各类情况
在牛客上做java题时遇到过多到关于try catch语句的问题,看了很多答案解析,在这里记录一下. 首先给出一道题目: 下面代码的运行结果为? A.catch语句块 和是43 B.编译异常 C.fi ...
- Whctf - OLDDRIVER - Writeup
Whctf - OLDDRIVER - Writeup 转载请标明出处http://www.cnblogs.com/WangAoBo/p/7541536.html 题目: 分析: 给了10组RSA的加 ...
- codeforces 1198B - Welfare State
题目链接:http://codeforces.com/problemset/status 题目大意为有n个市民,每个市民有ai点数财富,以下有q次操作,操作类型为两类,1类:把第p个市民的财富改为x, ...
- maven基础学习篇
一.Maven的两大核心功能:依赖管理(主要是jar包的管理) 和 一键构建 1.依赖管理:maven项目所需要的jar包全部放在仓库中,项目只放置jar包的坐标,所要用到的jar包都从仓库中获 ...
- 7-8 Left-pad
思路 注意读入和输出格式 如果用fgets读入的话会带上回车,输出的时候一定不要输出了双回车 并且此时的length也会比原始长度多了一,要注意长度比较,这里容易出错 代码 #include < ...
- SQL实现group by 分组后组内排序
在一个月黑风高的夜晚,自己无聊学习的SQL的时候,练习,突发奇想的想实现一个功能查询,一张成绩表有如下字段,班级ID,英语成绩,数据成绩,语文成绩如下图 实现 查询出 每个班级英语成绩最高的前两名的记 ...
- Docker - 命令 - docker image
概述 docker 客户端操控 镜像 1. 分类 概述 1 简单对 命令 做一些分类 分类 查看 ls inspect history 与 dockerhub 交互 pull push 导出 & ...
- JEECG屏蔽在线聊天插件
如图所示: 找到pom.xml文件将如下代码屏蔽即可: <!-- 在线聊天工具 --> <dependency> <groupId>org.p3framework& ...
- ASP.NET Core搭建多层网站架构【0-前言】
2020/01/26, ASP.NET Core 3.1, VS2019 摘要:基于ASP.NET Core 3.1 WebApi搭建后端多层网站架构 目录 0-前言 1-项目结构分层建立 2-公共基 ...
- CentOS7.6配置ip
查看CentOS版本信息 [root@localhost ~]# cat /etc/redhat-release CentOS Linux release (Core) 配置ip [root@loca ...