[欧拉路]CF1152E Neko and Flashback
题意:对于长为n的序列c和长为n - 1的排列p,我们可以按照如下方法得到长为n - 1的序列a,b,a',b'。
ai = min(ci, ci+1),bi = max(ci, ci+1)
a'i = ap[i],b'i = bp[i]。
现在给定a'和b',求一个合法的c或者无解。
解:仔细分析性质,发现在a和b中,c除了开头和结尾会出现1次之外,每个数都会出现两次,且相邻。
我们可以把c的开头找出来,然后根据开头确定c2,然后确定c3...最后到cn。
注意到这些数可能有重复的,于是我们要试图在中间插入一段。我一开始想的是链表后来发现很难写...
仔细分析,如果把a'和b'的每个位置当成边,数字当成点,就是求欧拉路。然后就没了......
关于欧拉路:就暴力DFS,把每条边都访问一次。回溯的时候把这条边入栈/把y入栈。
#include <bits/stdc++.h>
const int N = ;
struct Edge {
int nex, v, id, pre;
}edge[N << ]; int tp = ;
int X[N], xx, a[N], b[N], cnt[N], e[N], stk[N], top, deg[N];
bool vis[N];
inline void erase(int x, int i) {
int nex = edge[i].nex, pre = edge[i].pre;
if(e[x] == i && !nex) {
e[x] = ;
}
else if(e[x] == i) {
e[x] = nex;
edge[nex].pre = ;
return;
}
else if(!nex) {
edge[pre].nex = ;
}
else {
edge[nex].pre = pre;
edge[pre].nex = nex;
}
edge[i].nex = edge[i].pre = ;
return;
}
inline void add(int x, int y, int z) {
edge[++tp].v = y;
edge[tp].id = z;
edge[tp].nex = e[x];
edge[e[x]].pre = tp;
e[x] = tp;
return;
}
void DFS(int x) {
for(int i = e[x]; i; i = edge[i].nex) {
erase(x, i);
int y = edge[i].v;
if(vis[edge[i].id]) {
continue;
}
vis[edge[i].id] = ;
DFS(y);
stk[++top] = y;
}
return;
}
int main() {
int n;
scanf("%d", &n);
for(int i = ; i < n; i++) {
scanf("%d", &a[i]);
X[++xx] = a[i];
}
for(int j = ; j < n; j++) {
scanf("%d", &b[j]);
X[++xx] = b[j];
if(b[j] < a[j]) {
puts("-1");
return ;
}
}
std::sort(X + , X + xx + );
xx = std::unique(X + , X + xx + ) - X - ;
for(int i = ; i < n; i++) {
a[i] = std::lower_bound(X + , X + xx + , a[i]) - X;
b[i] = std::lower_bound(X + , X + xx + , b[i]) - X;
add(a[i], b[i], i);
add(b[i], a[i], i);
deg[a[i]]++;
deg[b[i]]++;
}
int s = , pos = ;
for(int i = ; i <= xx; i++) {
if(deg[i] & ) {
s++;
pos = i;
}
}
if(s != && s != ) {
puts("-1");
return ;
}
DFS(pos);
stk[++top] = pos;
if(top != n) {
puts("-1");
return ;
}
for(int i = top; i >= ; i--) {
printf("%d ", X[stk[i]]);
}
return ;
}
AC代码
注意复杂度,删边......
#include <bits/stdc++.h>
const int N = ;
struct Edge {
int nex, v, id;
}edge[N << ]; int tp = ;
int X[N], xx, a[N], b[N], cnt[N], e[N], stk[N], top, deg[N];
bool vis[N];
inline void add(int x, int y, int z) {
edge[++tp].v = y;
edge[tp].id = z;
edge[tp].nex = e[x];
e[x] = tp;
return;
}
void DFS(int x) {
for(int i = e[x]; i; i = e[x]) {
e[x] = edge[i].nex;
int y = edge[i].v;
if(vis[edge[i].id]) {
continue;
}
vis[edge[i].id] = ;
DFS(y);
stk[++top] = y;
}
return;
}
int main() {
int n;
scanf("%d", &n);
for(int i = ; i < n; i++) {
scanf("%d", &a[i]);
X[++xx] = a[i];
}
for(int j = ; j < n; j++) {
scanf("%d", &b[j]);
X[++xx] = b[j];
if(b[j] < a[j]) {
puts("-1");
return ;
}
}
std::sort(X + , X + xx + );
xx = std::unique(X + , X + xx + ) - X - ;
for(int i = ; i < n; i++) {
a[i] = std::lower_bound(X + , X + xx + , a[i]) - X;
b[i] = std::lower_bound(X + , X + xx + , b[i]) - X;
add(a[i], b[i], i);
add(b[i], a[i], i);
deg[a[i]]++;
deg[b[i]]++;
}
int s = , pos = ;
for(int i = ; i <= xx; i++) {
if(deg[i] & ) {
s++;
pos = i;
}
}
if(s != && s != ) {
puts("-1");
return ;
}
DFS(pos);
stk[++top] = pos;
if(top != n) {
puts("-1");
return ;
}
for(int i = top; i >= ; i--) {
printf("%d ", X[stk[i]]);
}
return ;
}
另一种删边方式
[欧拉路]CF1152E Neko and Flashback的更多相关文章
- 洛谷P1341 无序字母对[无向图欧拉路]
题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...
- POJ1386Play on Words[有向图欧拉路]
Play on Words Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11846 Accepted: 4050 De ...
- hdu1161 欧拉路
欧拉路径是指能从一个点出发能够“一笔画”完整张图的路径:(每条边只经过一次而不是点) 在无向图中:如果每个点的度都为偶数 那么这个图是欧拉回路:如果最多有2个奇数点,那么出发点和到达点必定为该2点,那 ...
- UVA10054The Necklace (打印欧拉路)
题目链接 题意:一种由彩色珠子组成的项链.每个珠子的两半由不同的颜色组成.相邻的两个珠子在接触的地方颜色相同.现在有一些零碎的珠子,需要确定他们是否可以复原成完整的项链 分析:之前也没往欧拉路上面想, ...
- 洛谷 P1341 无序字母对 Label:欧拉路 一笔画
题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...
- POJ 1637 Sightseeing tour (混合图欧拉路判定)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6986 Accepted: 2901 ...
- hihocoder 1181 欧拉路.二
传送门:欧拉路·二 #1181 : 欧拉路·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其 ...
- hiho48 : 欧拉路·一
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho最近在玩一个解密类的游戏,他们需要控制角色在一片原始丛林里面探险,收集道具,并找到最后的宝藏.现在他们控制的 ...
- hdu5883 The Best Path(欧拉路)
题目链接:hdu5883 The Best Path 比赛第一遍做的时候没有考虑回路要枚举起点的情况导致WA了一发orz 节点 i 的贡献为((du[i] / 2) % 2)* a[i] 欧拉回路的起 ...
随机推荐
- 校园商铺-4店铺注册功能模块-4Dto之ShopExecution的实现
1. DTO:添加店铺的返回类型 问题:为什么不直接用实体类Shop呢? 原因:在操作Shop的时候,必然会有一个状态.添加店铺,添加成功,还是添加失败? 如果添加失败,失败是一个什么状态,这些都是要 ...
- Python 学习杂项
#print("Hello World!") #name = "nihfjkds" age = 454 num1 = 1 num2 = 2 #print(nam ...
- Oracle数据导入导出命令
IMP 和EXP命令 Oracle数据导入导出imp/exp就相当于oracle数据还原与备份.exp命令可以把数据从远程数据库服务器导出到本地的dmp文件,imp命令可以把dmp文件从本地导入到远处 ...
- redis服务后台运行
文章目录 进入redis的安装目录 查看目录结构 进入src目录,普通启动效果 编辑redis服务目录下的redis.conf 进入src目录,执行后台运行的命令 检查服务是否开启 进入redis的安 ...
- day17_内置函数_文件处理
20180729 修改部分代码 更新:# # 5.max与列表指定参数 20180728 初次上传 #!/usr/bin/env python # -*- coding:utf-8 -*- ...
- day 65 Django基础十一之认证系统
Django基础十一之认证系统 本节目录 一 auth模块 二 User对象 三 扩展默认的auth_user表 四 xxx 五 xxx 六 xxx 七 xxx 八 xxx 一 auth模块 我们 ...
- Spring - 整合MyBatis
目的: 使用 Spring 容器用单例模式管理 MyBatis 的 sqlSessionFactory : 使用 Spring 管理连接池.数据源等: 将 Dao / Mapper 动态代理对象注入到 ...
- 6_1.springboot2.x整合JDBC与数据源配置原理解析
1.引言 对于数据访问层,无论是SQL还是NOSQL,Spring Boot默认采用整合 Spring Data的方式进行统一处理,添加大量自动配置,屏蔽了很多设置.引入各种xxxTemplate,x ...
- vue 计算属性实现过滤关键词
效果 html <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <m ...
- Android开发 GradientDrawable详解
前言 GradientDrawable类似与Xml布局里的shape,常用在一些自己封装的对话框控件的背景或者其他View中,优势是不需要你在带着xml布局文件一起封包.. 画线 GradientDr ...