1152E - Neko and Flashback

题意:对于长为n的序列c和长为n - 1的排列p,我们可以按照如下方法得到长为n - 1的序列a,b,a',b'。

ai = min(ci, ci+1),bi = max(ci, ci+1)

a'i = ap[i],b'i = bp[i]

现在给定a'和b',求一个合法的c或者无解。

解:仔细分析性质,发现在a和b中,c除了开头和结尾会出现1次之外,每个数都会出现两次,且相邻。

我们可以把c的开头找出来,然后根据开头确定c2,然后确定c3...最后到cn

注意到这些数可能有重复的,于是我们要试图在中间插入一段。我一开始想的是链表后来发现很难写...

仔细分析,如果把a'和b'的每个位置当成边,数字当成点,就是求欧拉路。然后就没了......

关于欧拉路:就暴力DFS,把每条边都访问一次。回溯的时候把这条边入栈/把y入栈。

 #include <bits/stdc++.h>

 const int N = ;

 struct Edge {
int nex, v, id, pre;
}edge[N << ]; int tp = ; int X[N], xx, a[N], b[N], cnt[N], e[N], stk[N], top, deg[N];
bool vis[N]; inline void erase(int x, int i) {
int nex = edge[i].nex, pre = edge[i].pre;
if(e[x] == i && !nex) {
e[x] = ;
}
else if(e[x] == i) {
e[x] = nex;
edge[nex].pre = ;
return;
}
else if(!nex) {
edge[pre].nex = ;
}
else {
edge[nex].pre = pre;
edge[pre].nex = nex;
}
edge[i].nex = edge[i].pre = ;
return;
} inline void add(int x, int y, int z) {
edge[++tp].v = y;
edge[tp].id = z;
edge[tp].nex = e[x];
edge[e[x]].pre = tp;
e[x] = tp;
return;
} void DFS(int x) {
for(int i = e[x]; i; i = edge[i].nex) {
erase(x, i);
int y = edge[i].v;
if(vis[edge[i].id]) {
continue;
}
vis[edge[i].id] = ;
DFS(y);
stk[++top] = y;
}
return;
} int main() { int n;
scanf("%d", &n);
for(int i = ; i < n; i++) {
scanf("%d", &a[i]);
X[++xx] = a[i];
}
for(int j = ; j < n; j++) {
scanf("%d", &b[j]);
X[++xx] = b[j];
if(b[j] < a[j]) {
puts("-1");
return ;
}
} std::sort(X + , X + xx + );
xx = std::unique(X + , X + xx + ) - X - ;
for(int i = ; i < n; i++) {
a[i] = std::lower_bound(X + , X + xx + , a[i]) - X;
b[i] = std::lower_bound(X + , X + xx + , b[i]) - X;
add(a[i], b[i], i);
add(b[i], a[i], i);
deg[a[i]]++;
deg[b[i]]++;
}
int s = , pos = ;
for(int i = ; i <= xx; i++) {
if(deg[i] & ) {
s++;
pos = i;
}
}
if(s != && s != ) {
puts("-1");
return ;
} DFS(pos);
stk[++top] = pos;
if(top != n) {
puts("-1");
return ;
}
for(int i = top; i >= ; i--) {
printf("%d ", X[stk[i]]);
} return ;
}

AC代码

注意复杂度,删边......

 #include <bits/stdc++.h>

 const int N = ;

 struct Edge {
int nex, v, id;
}edge[N << ]; int tp = ; int X[N], xx, a[N], b[N], cnt[N], e[N], stk[N], top, deg[N];
bool vis[N]; inline void add(int x, int y, int z) {
edge[++tp].v = y;
edge[tp].id = z;
edge[tp].nex = e[x];
e[x] = tp;
return;
} void DFS(int x) {
for(int i = e[x]; i; i = e[x]) {
e[x] = edge[i].nex;
int y = edge[i].v;
if(vis[edge[i].id]) {
continue;
}
vis[edge[i].id] = ;
DFS(y);
stk[++top] = y;
}
return;
} int main() { int n;
scanf("%d", &n);
for(int i = ; i < n; i++) {
scanf("%d", &a[i]);
X[++xx] = a[i];
}
for(int j = ; j < n; j++) {
scanf("%d", &b[j]);
X[++xx] = b[j];
if(b[j] < a[j]) {
puts("-1");
return ;
}
} std::sort(X + , X + xx + );
xx = std::unique(X + , X + xx + ) - X - ;
for(int i = ; i < n; i++) {
a[i] = std::lower_bound(X + , X + xx + , a[i]) - X;
b[i] = std::lower_bound(X + , X + xx + , b[i]) - X;
add(a[i], b[i], i);
add(b[i], a[i], i);
deg[a[i]]++;
deg[b[i]]++;
}
int s = , pos = ;
for(int i = ; i <= xx; i++) {
if(deg[i] & ) {
s++;
pos = i;
}
}
if(s != && s != ) {
puts("-1");
return ;
} DFS(pos);
stk[++top] = pos;
if(top != n) {
puts("-1");
return ;
}
for(int i = top; i >= ; i--) {
printf("%d ", X[stk[i]]);
} return ;
}

另一种删边方式

[欧拉路]CF1152E Neko and Flashback的更多相关文章

  1. 洛谷P1341 无序字母对[无向图欧拉路]

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...

  2. POJ1386Play on Words[有向图欧拉路]

    Play on Words Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11846   Accepted: 4050 De ...

  3. hdu1161 欧拉路

    欧拉路径是指能从一个点出发能够“一笔画”完整张图的路径:(每条边只经过一次而不是点) 在无向图中:如果每个点的度都为偶数 那么这个图是欧拉回路:如果最多有2个奇数点,那么出发点和到达点必定为该2点,那 ...

  4. UVA10054The Necklace (打印欧拉路)

    题目链接 题意:一种由彩色珠子组成的项链.每个珠子的两半由不同的颜色组成.相邻的两个珠子在接触的地方颜色相同.现在有一些零碎的珠子,需要确定他们是否可以复原成完整的项链 分析:之前也没往欧拉路上面想, ...

  5. 洛谷 P1341 无序字母对 Label:欧拉路 一笔画

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...

  6. POJ 1637 Sightseeing tour (混合图欧拉路判定)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 ...

  7. hihocoder 1181 欧拉路.二

    传送门:欧拉路·二 #1181 : 欧拉路·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其 ...

  8. hiho48 : 欧拉路·一

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho最近在玩一个解密类的游戏,他们需要控制角色在一片原始丛林里面探险,收集道具,并找到最后的宝藏.现在他们控制的 ...

  9. hdu5883 The Best Path(欧拉路)

    题目链接:hdu5883 The Best Path 比赛第一遍做的时候没有考虑回路要枚举起点的情况导致WA了一发orz 节点 i 的贡献为((du[i] / 2) % 2)* a[i] 欧拉回路的起 ...

随机推荐

  1. thinkphp for标签

    用法: 大理石平台厂家 <for start="开始值" end="结束值" comparison="" step="步进值 ...

  2. 如何区分无线AP跟无线路由器

    无线AP是一个无线网络的接入点,俗称“热点”.主要有路由交换接入一体设备和纯接入点设备,一体设备执行接入和路由工作,纯接入设备只负责无线客户端的接入,纯接入设备通常作为无线网络扩展使用,与其他AP或者 ...

  3. cookie的设置与销毁

    <?php /* 2个参数设置cookie cookie随着浏览器的关闭,就失效了 ); /* 下面我们让cookir多活一会 3个参数来设置cookie,第3个参数指的就是cookie的声明周 ...

  4. VS2010-MFC(常用控件:图片控件Picture Control)

    转自:http://www.jizhuomi.com/software/193.html 本节主要讲一种简单实用的控件,图片控件Picture Control.我们可以在界面某个位置放入图片控件,显示 ...

  5. 大数据和BI商业智能有何区别?有何相关

    大数据和BI商业智能有何区别?有何相关 大数据 ≠BI商业智能,大数据也不是传统商业智能的简单升级. 1.大数据和BI两者的区别 BI(BusinessIntelligence)即商业智能,它是企业数 ...

  6. idea2017.2普通web工程将lib包导入到artifact中的问题。

    这个问题找了解决了好久. 刚开始我以为是c3p0包错误,就把所有jar包都删了. 把依赖里的,library的,artfact->avaliable elements里的都删了. 重新复制粘贴到 ...

  7. nginx实用配置用例

    vue项目部署及后台api访问 nginx.conf # vue本地项目配置 ... server { listen 8000; server_name localhost; root /.../di ...

  8. Ubuntu环境下Error: Invalid or corrupt jarfile xxx.jar

    一.问题描述 Ubuntu环境下将Maven项目打包成jar包后,运行一下指令: $ java -jar my.jar 发生错误: Error: Invalid or corrupt jarfile ...

  9. 2019-8-31-dotnet-core-发布只带必要的依赖文件

    title author date CreateTime categories dotnet core 发布只带必要的依赖文件 lindexi 2019-08-31 16:55:58 +0800 20 ...

  10. 2019个人计划与Flag与期望

    突然发现写博客是真的好. 希望未来能在其他地方写上日记. 总结2018中的个人缺陷: 1.忘掉了学习方法或者说学习方法不正确 2.偶尔就会去偷下懒,对自己不够严格,自控能力差. 3.心态虽比以前好很多 ...