An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print YES if the tree is complete, or NO if not.

Sample Input 1:

5
88 70 61 63 65

Sample Output 1:

70 63 88 61 65
YES

Sample Input 2:

8
88 70 61 96 120 90 65 68

Sample Output 2:

88 65 96 61 70 90 120 68
NO

 #include <stdio.h>
#include <algorithm>
#include <iostream>
#include <map>
#include <vector>
#include <queue>
#include <set>
using namespace std;
struct node{
int data,height;
node *lchild,*rchild;
};
node* newNode(int v){
node* root = new node;
root->data = v;
root->lchild = root->rchild = NULL;
root->height = ;
return root;
}
int getHeight(node* root){
if(root==NULL)return ;
return root->height;
}
void updateHeight(node* root){
root->height = max(getHeight(root->lchild),getHeight(root->rchild))+;
}
int getBalanceFactor(node *root){
return getHeight(root->lchild)-getHeight(root->rchild);
}
void L(node* &root){
node* tmp=root->rchild;
root->rchild = tmp->lchild;
tmp->lchild = root;
updateHeight(root);
updateHeight(tmp);
root=tmp;
}
void R(node* &root){
node* tmp=root->lchild;
root->lchild = tmp->rchild;
tmp->rchild = root;
updateHeight(root);
updateHeight(tmp);
root = tmp;
}
void insert(node* &root,int v){
if(root==NULL){
root = newNode(v);
return;
}
if(v<root->data){
insert(root->lchild,v);
updateHeight(root);
if(getBalanceFactor(root)==){
if(getBalanceFactor(root->lchild)==){
R(root);
}
else if(getBalanceFactor(root->lchild)==-){
L(root->lchild);
R(root);
}
}
}
else{
insert(root->rchild,v);
updateHeight(root);
if(getBalanceFactor(root)==-){
if(getBalanceFactor(root->rchild)==-){
L(root);
}
else if(getBalanceFactor(root->rchild)==){
R(root->rchild);
L(root);
}
}
}
}
node* create(int data[],int n){
node* root = NULL;
for(int i=;i<n;i++){
insert(root,data[i]);
}
return root;
}
int flag=,after=;
void levelOrder(node* root,int n){
queue<node*> q;
int num=;
q.push(root);
while(!q.empty()){
node* now = q.front();
num++;
printf("%d",now->data);
if(num!=n)printf(" ");
else printf("\n");
q.pop();
if(now->lchild!=NULL){
if(after==)flag=;
q.push(now->lchild);
}
else after=;
if(now->rchild!=NULL){
if(after==)flag=;
q.push(now->rchild);
}
else after=;
}
}
int main(){
int n;
scanf("%d",&n);
int data[];
for(int i=;i<n;i++){
scanf("%d",&data[i]);
}
node* root = create(data,n);
levelOrder(root,n);
printf("%s",flag==?"YES":"NO");
}

注意点:第一次做到平衡二叉树和完全二叉树的判定的题目,重新看了一遍算法笔记,还是很生疏。AVL的插入左旋右旋要熟练记住,考前再看一眼。

完全二叉树的判定:层序遍历时,出现了有子节点为空的节点,后面的节点还出现子节点非空的情况,这就不是完全二叉树

PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树的更多相关文章

  1. 1066 Root of AVL Tree (25分)(AVL树的实现)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  2. PAT甲级:1066 Root of AVL Tree (25分)

    PAT甲级:1066 Root of AVL Tree (25分) 题干 An AVL tree is a self-balancing binary search tree. In an AVL t ...

  3. PAT甲级:1064 Complete Binary Search Tree (30分)

    PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...

  4. PAT 甲级 1066 Root of AVL Tree (25 分)(快速掌握平衡二叉树的旋转,内含代码和注解)***

    1066 Root of AVL Tree (25 分)   An AVL tree is a self-balancing binary search tree. In an AVL tree, t ...

  5. PAT 甲级 1064 Complete Binary Search Tree (30 分)(不会做,重点复习,模拟中序遍历)

    1064 Complete Binary Search Tree (30 分)   A Binary Search Tree (BST) is recursively defined as a bin ...

  6. PTA 04-树6 Complete Binary Search Tree (30分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/669 5-7 Complete Binary Search Tree   (30分) A ...

  7. PTA 04-树5 Root of AVL Tree (25分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/668 5-6 Root of AVL Tree   (25分) An AVL tree ...

  8. PAT-2019年冬季考试-甲级 7-4 Cartesian Tree (30分)(最小堆的中序遍历求层序遍历,递归建树bfs层序)

    7-4 Cartesian Tree (30分)   A Cartesian tree is a binary tree constructed from a sequence of distinct ...

  9. PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)

    嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...

随机推荐

  1. 【RabbitMQ】3、win7下安装RabbitMQ

    RabbitMQ依赖erlang,所以先安装erlang,然后再安装RabbitMQ; erlang,下载地址:http://www.erlang.org/download RabbitMQ,下载地址 ...

  2. web print

    <!doctype html> <html lang="en"> <head> <meta charset="utf-8&quo ...

  3. 结合vue展示百度天气接口天气预报

    HTML: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...

  4. Linux 磁盘使用查看 查看使用磁盘程序 Monitoring disk activity in linux

    5 TOOLS FOR MONITORING DISK ACTIVITY IN LINUX Here is a quick overview of 5 command-line tools that ...

  5. loadrunner 脚本开发-调用java jar文件远程操作Oracle数据库测试

    调用java jar文件远程操作Oracle数据库测试 by:授客 QQ:1033553122 测试环境 数据库:linux 下Oracle_11g_R2 Loadrunner:11 备注:想学ora ...

  6. HBuilder开发ios App离线打包启动画面无效的解决方法

    其中容易忽略的一点是manifest.json文件.plus下加入如下配置: "splashscreen": { "autoclose": false,/*如果 ...

  7. spring cloud 配置文件application.yml和bootstrap.yml 的定位,区别和联系总算是有一点明白了

    最近在启用springcloud配置中心server的东西,在整理属性资源的时候,突然发现:用了这么久的springboot,为什么会配置两个属性文件同时存在(application.yml/prop ...

  8. Linux笔记(二): WIN 10 Ubuntu 双系统

    (一)  说明 记录一次ubuntu安装过程及遇到的问题. 环境:WIN 10 单硬盘 (二)  ubuntu ISO文件下载 ubuntu 18.04 https://www.ubuntu.com/ ...

  9. [20170927]hugepages与内核参数nr_overcommit_hugepages.txt

    [20170927]hugepages与内核参数nr_overcommit_hugepages.txt /proc/sys/vm/nr_overcommit_hugepages specifies h ...

  10. ASP.NET MVC从请求到响应发生了什么

    *过程描述 当浏览器发出一个http请求后,该请求被UrlRoutingModule截获,UrlRoutingModule根据请求上下文去系统路由表(RouteTable)中匹配,从中获取一个Rout ...