嘟嘟嘟




这道题dp虽然不难,但是我还是没推出来,感觉最近脑子不太好用啊。

于是就跑去问神仙gjx(全国前三!)了。(外出集训真是好)




神仙不愧是神仙,一会儿就想出来了,而且方法还比网上的题解好懂。

dp[i][j]表示用值域为[1, i]的数,凑出的所有合法序列的值的和。

然后规定序列必须是严格递增的,这样答案再乘以一个\(n!\)就行了。

转移的时候,我们考虑\(i\)这个数用不用上,于是有:\(dp[i][j] = dp[i - 1][j] +i * dp[i - 1][j - 1]\)。现在感觉这个挺好理解的,如果用上\(i\)了,\(i\)就必须放在最后面,并且答案要乘以\(i\)。

但这个复杂度\(O(nA)\)的,\(A\)太大不好办。

然后gjx大佬告诉我,这个dp式是一个关于\(j\)的\(2n\)次多项式,然后给我证了一下,但还是不太懂:

首先知道\(dp[i][1] = \frac{i * (i + 1)}{2}\),猜想这可能是一个\(2n\)次的。

然后把转移方程中的\(dp[i - 1][j]\)不断展开,得到了\(dp[i][j] = \sum _ {k = 0} ^ {i - 1} dp[k][j] *(k + 1)\)。于是发现,这是一个关于\(j\)的\(2n\)次多项式。

(感觉自己还是不太理解)




这篇题解的证明好像也不错, 应该是数学归纳法,我得学一下)




知道这是个多项式,就可以拉格朗日差值了。

注意dp的边界取值,我这里debug了好久。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 505;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} int A, n, mod;
ll fac[maxn << 1], dp[maxn << 1][maxn]; In ll quickpow(ll a, ll b)
{
ll ret = 1;
for(; b; b >>= 1, a = a * a % mod)
if(b & 1) ret = ret * a % mod;
return ret;
} ll inv[maxn << 1], pre[maxn << 1], suf[maxn << 1];
In ll calc(int n)
{
inv[n] = quickpow(fac[n], mod - 2);
for(int i = n - 1; i >= 0; --i) inv[i] = inv[i + 1] * (i + 1) % mod;
pre[0] = A;
for(int i = 1; i <= n; ++i) pre[i] = pre[i - 1] * (A - i) % mod;
suf[n + 1] = 1;
for(int i = n; i >= 0; --i) suf[i] = suf[i + 1] * (A - i) % mod;
ll ret = 0;
for(int i = 0; i <= n; ++i)
{
ll tp = (i - 1 < 0 ? 1 : pre[i - 1]) * suf[i + 1] % mod * inv[i] % mod * inv[n - i] % mod;
if((n - i) & 1) tp = -tp;
ret = (ret + dp[i][n >> 1] * tp % mod + mod) % mod;
}
return ret;
} int main()
{
A = read(), n = read(), mod = read();
fac[1] = 1;
for(int i = 2; i <= (n << 1); ++i) fac[i] = fac[i - 1] * i % mod;
dp[0][0] = 1;
for(int i = 1; i <= (n << 1); ++i)
{
dp[i][1] = i * (i + 1) / 2;
dp[i][i] = fac[i];
for(int j = 2; j < i; ++j)
dp[i][j] = (dp[i - 1][j] + dp[i - 1][j - 1] * i % mod) % mod;
}
if(A <= (n << 1)) write(dp[A][n] * fac[n] % mod), enter;
else write(calc(n << 1) * fac[n] % mod), enter;
return 0;
}

[国家集训队] calc的更多相关文章

  1. [国家集训队] calc(动规+拉格朗日插值法)

    题目 P4463 [国家集训队] calc 集训队的题目真是做不动呀\(\%>\_<\%\) 朴素方程 设\(f_{i,j}\)为前\(i\)个数值域\([1,j]\),且序列递增的总贡献 ...

  2. P4463 [国家集训队] calc(拉格朗日插值)

    传送门 设\(dp[i][j]\)为考虑\(i\)个数,其中最大值不超过\(j\)的答案,那么转移为\[dp[i][j]=dp[i-1][j-1]\times i\times j+dp[i][j-1] ...

  3. Luogu P4463 [国家集训队] calc

    WJMZBMR的题果然放在几年后看来仍然挺神,提出了一种独特的优化DP的方式 首先我们想一个暴力DP,先定下所有数的顺序(比如强制它递增),然后最后乘上\(n!\)种排列方式就是答案了 那么我们容易想 ...

  4. p4463 [国家集训队] calc

    分析 代码 #include<bits/stdc++.h> using namespace std; ][],Ans; inline int pw(int x,int p){ ; whil ...

  5. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7676  Solved: 3509[Subm ...

  6. bzoj2152 / P2634 [国家集训队]聪聪可可(点分治)

    P2634 [国家集训队]聪聪可可 淀粉质点分治板子 边权直接 mod 3 直接点分治统计出所有的符合条件的点对再和总方案数约分 至于约分.....gcd搞搞就好辣 #include<iostr ...

  7. [洛谷P1527] [国家集训队]矩阵乘法

    洛谷题目链接:[国家集训队]矩阵乘法 题目背景 原 <补丁VS错误>请前往P2761 题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入输出格式 输入 ...

  8. P4827「国家集训队」 Crash 的文明世界

    「国家集训队」 Crash 的文明世界 提供一种不需要脑子的方法. 其实是看洛谷讨论版看出来的( (但是全网也就这一篇这个方法的题解了) 首先这是一个关于树上路径的问题,我们可以无脑上点分治. 考虑当 ...

  9. BZOJ 2039: [2009国家集训队]employ人员雇佣

    2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1369  Solved: 667[Submit ...

随机推荐

  1. Java设计模式学习记录-桥接模式

    前言 这次介绍结构型设计模式中的第二种模式,桥接模式. 使用桥接模式的目的就是为了解耦,松散的耦合更利于扩展,但是会增加相应的代码量和设计难度. 桥接模式 桥接模式是为了将抽象化与实现化解耦,让二者可 ...

  2. 如何查看oracle用户具有的权限和角色

    .查看所有用户: select * from dba_users; select * from all_users; select * from user_users; .查看用户或角色系统权限(直接 ...

  3. VS中C#的快捷键

    Ctrl+E,D: 格式化全部代码 Ctrl+E,C / Ctrl+K,C: 注释选定内容 Ctrl+E,U / Ctrl+K,U: 取消选定注释内容 Ctrl+E,S: 查看空白 Ctrl+E,W: ...

  4. 程序员快速掌握的UI设计技巧

    一.概要 功能与内在很关键,UI与外表也重要. 1.1.选择主色调 1.1.1.三原色 三原色指色彩中不能再分解的三种基本颜色,我们通常说的三原色,即红.黄.蓝.三原色可以混合出所有的颜色,同时相加为 ...

  5. ext js 4.0 grid表格根据列值的不同给行设置不同的背景颜色

    Code: Ext.create('Ext.grid.Panel', { ... viewConfig: { getRowClass: function(record) { return record ...

  6. 数据库部分(MySql)_1

    SQL规范 以 “ ; ” 结尾:关键字之间要有空格(可以由多个空格):SQL语句中可以一个或多个换行:关键字不区分大小写. 数据库相关SQL 查询所有数库库: show databases; 创建数 ...

  7. C#常用单元测试框架比较:XUnit、NUnit和Visual Studio(MSTest)

    做过单元测试的同学大概都知道以上几种测试框架,但我一直很好奇它们到底有什么不同,然后搜到了一篇不错的文章清楚地解释了这几种框架的最大不同之处. 地址在这里:http://www.tuicool.com ...

  8. 不要使用 JWT 进行会话管理

    英文原文地址:Stop using JWT for sessions 最近我发现越来越多的人推荐使用 JWT 来在 Web 应用中管理会话(Session),这是一个非常非常糟糕的主意,在这篇文章中我 ...

  9. jQuery性能优化的一些参考建议

    JQ3.1 文档下载地址:https://pan.baidu.com/s/1c2vMQdy 一.注意定义jQuery变量的时候添加var关键字 这个不仅仅是JQ,在JS中都是必须的 二.如果有多个变量 ...

  10. canvas-0translate.html

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...