平衡树的广阔天地中,以Treap,Splay等为代表的通过旋转来维护平衡的文艺平衡树占了觉大部分。

然而,今天我们要讲的Scapegoat Tree(替罪羊树)就是一个特立独行的平衡树,它通过暴力重构来维护平衡,并且凭借着好写,好调,常数小等特点十分有用。

记得g1n0st说过:

暴力即是优雅。

当然这里说的暴力并不是指那种不加以思考的无脑的暴力,而是说用繁琐而技巧性的工作可以实现的事,我用看似简单的思想和方法,也可以达到近似于前者的空间复杂度和时间复杂度,甚至可以更优,而其中也或多或少的夹杂着一些" Less is more "的思想在其中。

而替罪羊树的重构就充满了暴力美学,一言不合就把整棵子树拍扁重建,比如一棵这样的树:

而这样很显然,根的右子树(以\(11\)为根)的子树太深了,我们给它手动拍扁:

然后接回去就变成了:

至于如何有序,我们想一下二叉树的中序遍历,不是可以直接用线性时间把那个拍扁后的序列得出来了。

然后我们发现重构虽然可以维持树的形状,但它本身的较大的复杂度开销也会引起TLE,因此我们要控制重构的次数

我们引入一个平衡因子\(alpha\),一般取值在\([0,7,0.8]\)之间,当一棵子树的左右子树的节点个数的较大值大于这棵子树总的节点个数\(\cdot alpha\)时,我们就把这棵子树拍扁重构。

特殊地,当一个点被插入时,如果有多个要被重建的节点,那们我们就把以最高的(深度最小的)节点(又叫替罪羊节点)为根的整棵子树重构即可。

形象的理解一下:子树要被重建不是我原来根的锅,但是我就是被拍扁了还被重建了。果然不负替罪羊树的称号。

然后在删除时,我们如果直接删除由于没有旋转操作,大量的重构可能会引起TLE。

因此我们像线段树的lazy标记一样,在删除一个点时直接打标记删除即可。

然后又是板子题的CODE

#include<cstdio>
#include<cctype>
using namespace std;
typedef double DB;
const int N=100005;
const DB alpha=0.75;
struct Scapegoat
{
int ch[2],size,fac,val;
bool exi;
}node[N];//size是子树总大小(算上被删除的点),fac是实际上子树总大小(不计被删除的点),exi表示是否被删除
int cur[N],mempol[N],cnt,tot,n,opt,x,rt,st;
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; int flag=1; while (!isdigit(ch=tc())) flag=ch^'-'?1:-1;
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc())); x*=flag;
}
inline void write(int x)
{
if (x<0) putchar('-'),x=-x;
if (x>9) write(x/10);
putchar(x%10+'0');
}
inline int max(int a,int b)
{
return a>b?a:b;
}
inline bool balance(int now)//判断是否平衡
{
return (DB)node[now].fac*alpha>(DB)max(node[node[now].ch[0]].fac,node[node[now].ch[1]].fac);
}
inline void pushup(int now)
{
node[now].size=node[node[now].ch[0]].size+node[node[now].ch[1]].size+1;
node[now].fac=node[node[now].ch[0]].fac+node[node[now].ch[1]].fac+1;
}
inline void build(int now)
{
node[now].ch[0]=node[now].ch[1]=0;
node[now].size=node[now].fac=1;
}
inline void traversal(int now)//中序遍历
{
if (!now) return; traversal(node[now].ch[0]);
if (node[now].exi) cur[++cnt]=now; else mempol[++tot]=now;
traversal(node[now].ch[1]);
}
inline void setup(int l,int r,int &now)//将被拍扁的序列接成一棵树,注意每次取端点保证深度最小
{
int mid=l+r>>1; now=cur[mid];
if (l==r) { build(now); return; }
if (l<mid) setup(l,mid-1,node[now].ch[0]); else node[now].ch[0]=0;
setup(mid+1,r,node[now].ch[1]); pushup(now);
}
inline void rebuild(int &now)//重构
{
cnt=0; traversal(now);
if (cnt) setup(1,cnt,now); else now=0;
}
inline void insert(int &now,int val)//插入,还是遵循BST的性质
{
if (!now)
{
now=mempol[tot--]; node[now].val=val; node[now].exi=1;
build(now); return;
}
++node[now].size; ++node[now].fac;
if (val<=node[now].val) insert(node[now].ch[0],val); else insert(node[now].ch[1],val);
}
inline void check(int now,int val)//在插入时检查合法性,一言不和就重构
{
int d=val<=node[now].val?0:1;
while (node[now].ch[d])
{
if (!balance(node[now].ch[d])) { rebuild(node[now].ch[d]); break; }
now=node[now].ch[d]; d=val<=node[now].val?0:1;
}
}
inline int get_rk(int val)//得到排名,由于和许多的BST类似,就不再赘述
{
int now=rt,rk=1;
while (now)
{
if (val<=node[now].val) now=node[now].ch[0];
else rk+=node[node[now].ch[0]].fac+node[now].exi,now=node[now].ch[1];
}
return rk;
}
inline int get_val(int rk)//得到排名为rk的数
{
int now=rt;
while (now)
{
if (node[now].exi&&node[node[now].ch[0]].fac+1==rk) return node[now].val;
else if (node[node[now].ch[0]].fac>=rk) now=node[now].ch[0];
else rk-=node[node[now].ch[0]].fac+node[now].exi,now=node[now].ch[1];
}
}
inline void remove_rk(int &now,int rk)//删除排名为rk的数
{
if (node[now].exi&&node[node[now].ch[0]].fac+1==rk) { node[now].exi=0; --node[now].fac; return; }
--node[now].fac; if (node[node[now].ch[0]].fac+node[now].exi>=rk) remove_rk(node[now].ch[0],rk);
else remove_rk(node[now].ch[1],rk-node[node[now].ch[0]].fac-node[now].exi);
}
inline void remove_val(int val)//删除值为val的数,注意如果实际上的点已经很少了也要重构
{
remove_rk(rt,get_rk(val));
if ((double)node[rt].size*alpha>node[rt].fac) rebuild(rt);
}
inline void init(void)
{
for (register int i=100000;i>=1;--i)
mempol[++tot]=i;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
read(n); init();
while (n--)
{
read(opt); read(x);
switch (opt)
{
case 1:st=rt,insert(rt,x),check(st,x); break;
case 2:remove_val(x); break;
case 3:write(get_rk(x)),putchar('\n'); break;
case 4:write(get_val(x)),putchar('\n'); break;
case 5:write(get_val(get_rk(x)-1)),putchar('\n'); break;
case 6:write(get_val(get_rk(x+1))),putchar('\n'); break;
}
}
return 0;
}

——识替罪羊树之算法乃吾生之幸也!

在平衡树的海洋中畅游(二)——Scapegoat Tree的更多相关文章

  1. 在平衡树的海洋中畅游(一)——Treap

    记得有一天翔哥毒奶我们: 当你们已经在平衡树的海洋中畅游时,我还在线段树的泥沼中挣扎. 我觉得其实像我这种对平衡树一无所知的蒟蒻也要开一开数据结构了. 然后花了一天啃了下最简单的平衡树Treap,感觉 ...

  2. 在平衡树的海洋中畅游(三)——Splay

    Preface 由于我怕学习了Splay之后不直接写blog第二天就忘了,所以强行加了一波优先级. 论谁是天下最秀平衡树,我Splay第一个不服.维护平衡只靠旋转. 一言不合转死你 由于平衡树我也介绍 ...

  3. 在平衡树的海洋中畅游(四)——FHQ Treap

    Preface 关于那些比较基础的平衡树我想我之前已经介绍的已经挺多了. 但是像Treap,Splay这样的旋转平衡树码亮太大,而像替罪羊树这样的重量平衡树却没有什么实际意义. 然而类似于SBT,AV ...

  4. 【BZOJ5020】【THUWC2017】在美妙的数学王国中畅游(Link-Cut Tree,组合数学)

    [BZOJ5020][THUWC2017]在美妙的数学王国中畅游(Link-Cut Tree,组合数学) 题解 Description 数字和数学规律主宰着这个世界. 机器的运转, 生命的消长, 宇宙 ...

  5. 简析平衡树(一)——替罪羊树 Scapegoat Tree

    前言 平衡树在我的心目中,一直都是一个很高深莫测的数据结构.不过,由于最近做的题目的题解中经常出现"平衡树"这三个字,我决定从最简单的替罪羊树开始,好好学习平衡树. 简介 替罪羊树 ...

  6. [LOJ2289][THUWC2017]在美妙的数学王国中畅游:Link-Cut Tree+泰勒展开

    分析 又有毒瘤出题人把数学题出在树上了. 根据泰勒展开,有: \[e^x=1+\frac{1}{1!}x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+...\] \[sin(x)= ...

  7. 平衡树 替罪羊树(Scapegoat Tree)

    替罪羊树(Scapegoat Tree) 入门模板题 洛谷oj P3369 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作: 插入xx数 删除xx数(若有多个相同 ...

  8. 由生到死10个月!做App中的“二”有多难

    十月,原本是怀胎过程的喜悦时光,但这段个时光,如今却是绝大多数App从生到死的所有时间.在App市场表面形式一片大好,彻底主宰我们生活.工作.娱乐的当下,绝大多数用户只是在App海洋中只取一瓢饮,其他 ...

  9. FastReport 中添加二维码功能.(Delphi)

    http://www.cnblogs.com/fancycloud/archive/2011/07/24/2115240.html FastReport 中添加二维码功能.(Delphi)   在实际 ...

随机推荐

  1. 对word2vec的理解及资料整理

    对word2vec的理解及资料整理 无他,在网上看到好多对word2vec的介绍,当然也有写的比较认真的,但是自己学习过程中还是看了好多才明白,这里按照自己整理梳理一下资料,形成提纲以便学习. 介绍较 ...

  2. Apache POI导出excel表格

    项目中我们经常用到导出功能,将数据导出以便于审查和统计等.本文主要使用Apache POI实现导出数据. POI中文文档 简介 ApachePOI是Apache软件基金会的开放源码函式库,POI提供A ...

  3. [20180713]关于hash join 测试中一个疑问.txt

    [20180713]关于hash join 测试中一个疑问.txt --//上个星期做的测试,链接: http://blog.itpub.net/267265/viewspace-2157424/-- ...

  4. python-Tkinter整理总结

    笔者学习Tkinter模块也有好久时间了,现将学习的做以整理. tkinter简介(一) tkinter中lable标签控件(二) tkinter中button按钮控件(三) tkinter中entr ...

  5. 大表分批删除脚本之MySQL版

    经常需要定期对某些表删除历史数据,通常这样的表的数据又是非常巨大,为了减轻对线上环境的影响,删除时必须分成小批量来进行. 以前分享过SQLServer的版本. 下面是MySQL版本: delimite ...

  6. Linux的命名空间详解--Linux进程的管理与调度(二)【转】

    Linux Namespaces机制提供一种资源隔离方案. PID,IPC,Network等系统资源不再是全局性的,而是属于特定的Namespace.每个Namespace里面的资源对其他Namesp ...

  7. python流程控制语句-if语句

    一个if语句 if语句用来检验一个条件, 如果 条件为真,我们运行一块语句(称为 if-块 ),也就是只有一个if判断,当为真的时候就运行一块语句,否则就不运行 下面代码中的if语句控制者缩进的pri ...

  8. 控件_RadioGroup&&RadioButton(单选按钮)和Toast

    <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools=&q ...

  9. $Matrix-Tree$定理-题目

    $Matrix-Tree$ 其实矩阵树的题挺好玩的,一些是套班子求答案的,也有一些题目是靠观察基尔霍夫矩阵性质推式子的. 文艺计算姬:https://www.lydsy.com/JudgeOnline ...

  10. Excel里面Left这个怎么用?

    LEFT 返回文本字符串中第一个字符或前几个字符LEFT(A2, 4)LEFT 返回前 4 个字符,因为每个字符按 1 计数.无论您计算机上的默认语言设置如何,函数 LEFT 都返回前 4 个字符.