BZOJ4530 BJOI2014大融合(线段树合并+并查集+dfs序)
易知所求的是两棵子树大小的乘积。先建出最后所得到的树,求出dfs序和子树大小。之后考虑如何在动态加边过程中维护子树大小。这个可以用树剖比较简单的实现,但还有一种更快更优美的做法就是线段树合并。对每个点开权值线段树,维护当前时刻这棵点为根的子树中,已经和其相连的点的dfs序情况。合并时直接将表示两棵子树的线段树合并,查询在整棵子树中查询某段dfs序区间。
也可以在线地用lct维护子树,并不会。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
int n,q,fa[N],dfn[N],p[N],root[N],size[N],t=,cnt=;
struct data{int x,y,op;
}Q[N];
struct data2{int to,nxt;
}edge[N<<];
struct data3{int l,r,x;
}tree[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
void dfs(int k)
{
dfn[k]=++cnt;size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (!dfn[edge[i].to])
{
dfs(edge[i].to);
size[k]+=size[edge[i].to];
}
}
void add(int &k,int l,int r,int x)
{
if (!k) k=++cnt;
tree[k].x++;
if (l==r) return;
int mid=l+r>>;
if (x<=mid) add(tree[k].l,l,mid,x);
else add(tree[k].r,mid+,r,x);
}
int merge(int x,int y,int l,int r)
{
if (!x||!y) return x|y;
tree[x].x+=tree[y].x;
int mid=l+r>>;
tree[x].l=merge(tree[x].l,tree[y].l,l,mid),
tree[x].r=merge(tree[x].r,tree[y].r,mid+,r);
return x;
}
int query(int k,int l,int r,int x,int y)
{
if (!k) return ;
if (l==x&&r==y) return tree[k].x;
int mid=l+r>>;
if (y<=mid) return query(tree[k].l,l,mid,x,y);
else if (x>mid) return query(tree[k].r,mid+,r,x,y);
else return query(tree[k].l,l,mid,x,mid)+query(tree[k].r,mid+,r,mid+,y);
}
int main()
{
freopen("bzoj4530.in","r",stdin);
freopen("bzoj4530.out","w",stdout);
n=read(),q=read();
for (int i=;i<=n;i++) fa[i]=i;
for (int i=;i<=q;i++)
{
char c=getchar();
while (c!='A'&&c!='Q') c=getchar();
Q[i].x=read(),Q[i].y=read();
if (c=='A') Q[i].op=,addedge(Q[i].x,Q[i].y),addedge(Q[i].y,Q[i].x);else Q[i].op=;
}
for (int i=;i<=n;i++)
if (!dfn[i]) dfs(i);
cnt=;
for (int i=;i<=n;i++)
add(root[i],,n,dfn[i]);
for (int i=;i<=q;i++)
{
if (dfn[Q[i].x]>dfn[Q[i].y]) swap(Q[i].x,Q[i].y);
int p=find(Q[i].x);
if (Q[i].op==)
{
fa[Q[i].y]=p;
root[p]=merge(root[p],root[Q[i].y],,n);
}
else
{
int s=query(root[p],,n,dfn[Q[i].y],dfn[Q[i].y]+size[Q[i].y]-),t=tree[root[p]].x;
printf("%lld\n",1ll*s*(t-s));
}
}
fclose(stdin);fclose(stdout);
return ;
}
BZOJ4530 BJOI2014大融合(线段树合并+并查集+dfs序)的更多相关文章
- 【BZOJ-4530】大融合 线段树合并
4530: [Bjoi2014]大融合 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 280 Solved: 167[Submit][Status] ...
- BZOJ4399魔法少女LJJ——线段树合并+并查集
题目描述 在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女LJJ已经觉得自己见过世界上的所有稀奇古怪的事情了LJJ感叹道“这里真是个迷人的绿色世界,空气清新.淡雅,到处散发着醉人的奶浆味: ...
- [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并
[BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...
- Educational Codeforces Round 51 (Rated for Div. 2) G. Distinctification(线段树合并 + 并查集)
题意 给出一个长度为 \(n\) 序列 , 每个位置有 \(a_i , b_i\) 两个参数 , \(b_i\) 互不相同 ,你可以进行任意次如下的两种操作 : 若存在 \(j \not = i\) ...
- Codeforces.1051G.Distinctification(线段树合并 并查集)
题目链接 \(Description\) 给定\(n\)个数对\(A_i,B_i\).你可以进行任意次以下两种操作: 选择一个位置\(i\),令\(A_i=A_i+1\),花费\(B_i\).必须存在 ...
- BZOJ2733[HNOI2012]永无乡——线段树合并+并查集+启发式合并
题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...
- 洛谷P3224 [HNOI2012]永无乡(线段树合并+并查集)
题目描述 永无乡包含 nnn 座岛,编号从 111 到 nnn ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 nnn 座岛排名,名次用 111 到 nnn 来表示.某些岛之间由巨大的桥连接, ...
- 线段树合并+并查集 || BZOJ 2733: [HNOI2012]永无乡 || Luogu P3224 [HNOI2012]永无乡
题面:P3224 [HNOI2012]永无乡 题解: 随便写写 代码: #include<cstdio> #include<cstring> #include<iostr ...
- 【BZOJ2733】永无乡(线段树,并查集)
[BZOJ2733]永无乡(线段树,并查集) 题面 BZOJ 题解 线段树合并 线段树合并是一个很有趣的姿势 前置技能:动态开点线段树 具体实现:每次合并两棵线段树的时候,假设叫做\(t1,t2\), ...
随机推荐
- 配置进程外的Session
1.Session保存在SQLServer中配置方法 1)运行.NetFramework安装目录下对应版本的aspnet_regsql.exe 来创建相关的数据库.表和存储过程等,比如: C:\Win ...
- 使用Topshelf管理Windows服务
目的:以控制台方式开发Windows服务程序,调试部署方便. https://www.cnblogs.com/itjeff/p/8316244.html https://www.cnblogs.com ...
- 轻量级WebApi请求插件:PostMan
时间很宝贵,废话不多说,只说三句,如下: 十年河东,十年河西,莫欺骚年穷!~_~ 打错个字,应该是莫欺少年穷! 学历代表你的过去,能力代表你的现在,学习代表你的将来. 学无止境,精益求精. 本次介绍的 ...
- dotnetcore/CAP
CAP带你轻松玩转Asp.Net Core消息队列 CAP是什么? CAP是由我们园子里的杨晓东大神开发出来的一套分布式事务的决绝方案,是.Net Core Community中的第一个千星项目(目前 ...
- 腾讯云COS体验
其实这篇文章本来是推荐COS的,写了一半发现COS的免费额度取消了,2019年之后的开通的用户免费6个月,老用户不受影响,这还让我怎么推荐啊?!写都写了,删掉岂不是白浪费时间? 都怪你!腾讯云! 起因 ...
- 如何在《救赎之路》中使用CPU粒子效果
Unreal游戏引擎4.19版本的发布,可以使得游戏可以更好地利用Intel多核心处理器的性能,以提供更精彩的游戏体验.这里以<救赎之路>这款优秀的国产独立游戏为例说明如何在游戏中使用CP ...
- 有道云笔记导入txt文件的方法
有道云笔记pc版迷之不能导入txt文件 尝试很多方法后发现 通过网页版 有道云 可以直接上传 但是pc版不能查看而移动端可以查看 很迷~
- Linux下FastDFS分布式存储-总结及部署记录
一.分布式文件系统介绍分布式文件系统:Distributed file system, DFS,又叫做网络文件系统:Network File System.一种允许文件通过网络在多台主机上分享的文件系 ...
- linux-shell-引用-命令替换-命令退出状态-逻辑操作符
命令替换:bash7步扩展的之一 嵌套 这里没什么意义 退出状态可以参与逻辑判断 表达式 算数表达式和条件表达式,逻辑表达式 查看passwd命令比,避免用户捕获输入密码的接口 这种方式就可以直接输 ...
- 关于dreamweaver的软件测评
最近在用javascript编写程序,于是便用到了dreamweaver .所以,想写一个关于dreamweaver的软件测评. 学生本人使用的是dreamweaver 8.首先,谈谈本人使用感受,打 ...