以如下图的无向图G4为例,进行图的深度优先搜索:

假设从顶点v1出发进行搜索,在访问了顶点v1之后,选择邻接点v2。因为v2未曾访问,则从v2出发进行搜索。依次类推,接着从v、v8 、v5出发进行搜索。在访问了v5之后,由于v5的邻接点都已被访问,则搜索回到v8。由于同样的理由,搜索继续回到v4,v2直至v1,此时由于v1的另一个邻接点未被访问,则搜索又从v1到v3,再继续进行下去由此,得到的顶点访问序列为:

代码:

 /*    图的DFS遍历    */
//邻接矩阵形式实现
//顶点从1开始
#include<iostream>
#include<cstdio>
using namespace std;
const int maxn = ; //最大顶点数
typedef int VertexType; //顶点类型
bool vis[maxn]; struct Graph{ //邻接矩阵表示的图结构
VertexType vex[maxn]; //存储顶点
int arc[maxn][maxn]; //邻接矩阵
int vexnum,arcnum; //图的当前顶点数和弧数
}; void createGraph(Graph &g) //构建无向图
{
cout<<"请输入顶点数和边数:";
cin>>g.vexnum>>g.arcnum; //构造顶点向量
cout<<"请依次输入各顶点:\n";
for(int i=;i<=g.vexnum;i++){
scanf("%d",&g.vex[i]);
} //初始化邻接矩阵
for(int i=;i<=g.vexnum;i++){
for(int j=;j<=g.vexnum;j++){
g.arc[i][j] = ;
}
} //构造邻接矩阵
VertexType u,v; //分别是一条弧的弧尾(起点)和弧头(终点)
printf("每一行输入一条弧依附的顶点(空格分开):\n");
for(int i=;i<=g.arcnum;i++){
cin>>u>>v;
g.arc[u][v] = g.arc[v][u] = ;
}
} //邻接矩阵的深度优先递归算法
void DFS(Graph g,int i)
{
vis[i] = true;
printf("%d\t",g.vex[i]); //打印顶点
for(int j=;j<=g.vexnum;j++){ //遍历每个顶点
if(g.arc[i][j]== && !vis[j]){ //如果顶点j是顶点i的未访问的邻接点
DFS(g,j); //深度优先搜索顶点j
}
}
} //邻接矩阵的深度遍历操作
void DFSTraverse(Graph g)
{
for(int i=;i<=g.vexnum;i++){
vis[i] = false; //初始化所有顶点状态都是未访问过状态
}
for(int i=;i<=g.vexnum;i++){
if(!vis[i]){
DFS(g,i); //对未访问的顶点调用DFS,若是连通图,只会执行一次
}
}
} int main()
{
Graph g;
createGraph(g);
DFSTraverse(g);
return ;
}

DFS实现模板的更多相关文章

  1. DFS 算法模板

    dfs算法模板: 1.下一层是多节点的dfs遍历 def dfs(array or root, cur_layer, path, result): if cur_layer == len(array) ...

  2. DFS算法(——模板习题与总结)

    首先,需要说明的是搜索算法本质上也是枚举的一种,时间复杂度还是很高的,遇到问题(特别是有水平的比赛上),不要优先使用搜索算法. 这里总结一下DFS算法: 1.从图中某个顶点出发,访问v. 2.找出刚访 ...

  3. 图的dfs遍历模板(邻接表和邻接矩阵存储)

    我们做算法题的目的是解决问题,完成任务,而不是创造算法,解题的过程是利用算法的过程而不是创造算法的过程,我们不能不能陷入这样的认识误区.而想要快速高效的利用算法解决算法题,积累算法模板就很重要,利用模 ...

  4. 图的遍历(bfs+dfs)模板

    bfs #include<iostream> #include<queue> #include<cstdio> using namespace std; queue ...

  5. Toposort(拓扑排序)dfs递归模板

    最近刷了几题拓扑排序的题,记录一下拓扑排序 在有向图中,并且按照一定的规则(题目所给的规则)排序.如果图中出现了有向环的话就无法排序了. int gap[maxn][maxn];//记录下有向边 in ...

  6. 图论--树的重心(DFS) 模板

    const int maxn=500005; int tot=0,n; int ans,size; int sx[maxn],head[maxn]; int vis[maxn]; struct edg ...

  7. dfs初步模板解析

    #include<stdio.h> int a[10],book[10],n; //这里还有需要注意的地方C语言全局变量默认为0 void dfs(int step){ //此时在第ste ...

  8. DFS普及组常用模板简单整理

    一些普及组会用到的DFS模板,其他的DFS我感觉普及组不会用到所以暂且搁着,等之后有时间了再细写w (至于我为什么最近不写TG相关只写最基础的PJ的内容,请戳这里了解) dfs各种模板big集合 1. ...

  9. 求强连通分量模板(tarjan算法)

    关于如何求强连通分量的知识请戳 https://www.byvoid.com/blog/scc-tarjan/ void DFS(int x) { dfn[x]=lowlink[x]=++dfn_cl ...

随机推荐

  1. C#中Math.Round()的中国式用法

    C#中的Math.Round()并不是使用的"四舍五入"法.而是(银行家算法),即:四舍六入五取偶.事实上这也是IEEE的规范,因此所有符合IEEE标准的语言都应该采用这样的算法. ...

  2. Mac iOS 允许从任何来源下载应用并打开

    一个快捷的小知识点,mark! 允许从任何来源下载应用并打开,不用手动去允许,更加简洁! 只需一行命令 sudo spctl --master-disable 1.正常情况下,打开偏好设置,选择安全性 ...

  3. 如何在match中使用正则表达式

    这是在实现搜索功能的时候遇到的一个问题,在搜索的场景中,会根据搜索框中输入的内容,匹配出包含搜索内容的部分.简单模拟还原使用场景: 首先定义一个遍历 value 用来接收输入的内容 var value ...

  4. SAC E#1 - 一道难题 Tree(树形DP)

    题目背景 冴月麟和魏潇承是好朋友. 题目描述 冴月麟为了守护幻想乡,而制造了幻想乡的倒影,将真实的幻想乡封印了.任何人都无法进入真实的幻想乡了,但是她给前来救她的魏潇承留了一个线索. 她设置了一棵树( ...

  5. window系统下pycharm的破解配置

    将C:\Windows\System32\drivers\etc\hosts内的写出: linux系统的话在 /etc/hosts,必须修改权限:sudo chmod a=rwx hosts 0.0. ...

  6. Jenkins 添加节点 java web方式

    环境说明: 主节点:windows server 从节点:两台linux 1. windows server安装jenkins就不多说了,直接添加节点配置如下 2.全局安全配置,指定确认的端口后,记得 ...

  7. vs2017升级、安装

    图解VS 2017升级并安装.NET Core 2.1 SDK https://jingyan.baidu.com/album/ff42efa9fb5816c19e2202ef.html?picind ...

  8. JS基础知识-01

    01-浅谈前端发展史 第一阶段:C/S(client server)->B/S(browser server) 网页制作 技术栈:PhotoShop.HTML.CSS 第二阶段:从静态到动态,从 ...

  9. Redis缓存数据库的安装与配置(3)

    3 Redis主动同步设置方法 Redis主从同步 1.Redis主从同步特点 一个master可以拥有多个slave 多个slave可以连接同一个master,还可以连接到其他slave 主从复制不 ...

  10. [转]Makefile中使用$$的使用

    在makefile中,会经常使用shell命令,也经常见到$var 和 $$var的情况,有什么区别呢,区别大了.不要认为在makefile的规则的命令行中使用$var就是将makefile的变量和s ...