Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle.
In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 

As an example, the maximal sub-rectangle of the array: 

0 -2 -7 0 

9 2 -6 2 

-4 1 -4 1 

-1 8 0 -2 

is in the lower left corner: 

9 2 

-4 1 

-1 8

and has a sum of 15.

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines).
These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4

0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2

Sample Output

15

解题报告:这道题真的是感人,状态转移方程干到我怀疑人生,最后终于搞明白了,下面附上理解图,希望能便于大家理解此题的DP方程

#include <bits/stdc++.h>
using namespace std; int map[110][110],dp[110][110]; int main()
{
//freopen("input.txt","r",stdin);
int N,a;
while(~scanf("%d",&N) && N)
{
memset(map,0,sizeof(map));
memset(dp,0,sizeof(dp)); for(int i = 1; i <= N; i++)
for(int j = 1; j <= N; j++)
{
scanf("%d",&a);
map[i][j] = map[i][j-1] + a;
//map[i][j]表示第i行前j列的和
} int Max = -0xffffff0; for(int j = 1; j <= N; j++)
for(int i = 1; i <= j; i++)
{
dp[i][j] = 0; for(int k = 1; k <= N; k++)
{
dp[i][j]= max(dp[i][j]+map[k][j]-map[k][i-1],map[k][j]-map[k][i-1]);
if(dp[i][j] > Max) Max = dp[i][j];
}
} printf("%d\n",Max);
}
return 0;
}

(POJ - 1050)To the Max 最大连续子矩阵和的更多相关文章

  1. POJ 1050 To the Max 最大子矩阵和(二维的最大字段和)

    传送门: http://poj.org/problem?id=1050 To the Max Time Limit: 1000MS   Memory Limit: 10000K Total Submi ...

  2. poj 1050 To the Max(最大子矩阵之和)

    http://poj.org/problem?id=1050 我们已经知道求最大子段和的dp算法 参考here  也可参考编程之美有关最大子矩阵和部分. 然后将这个扩大到二维就是这道题.顺便说一下,有 ...

  3. [ACM_动态规划] POJ 1050 To the Max ( 动态规划 二维 最大连续和 最大子矩阵)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

  4. poj 1050 To the Max(最大子矩阵之和,基础DP题)

    To the Max Time Limit: 1000MSMemory Limit: 10000K Total Submissions: 38573Accepted: 20350 Descriptio ...

  5. POJ 1050 To the Max (最大子矩阵和)

    题目链接 题意:给定N*N的矩阵,求该矩阵中和最大的子矩阵的和. 题解:把二维转化成一维,算下就好了. #include <cstdio> #include <cstring> ...

  6. hdu 1081 &amp; poj 1050 To The Max(最大和的子矩阵)

    转载请注明出处:http://blog.csdn.net/u012860063 Description Given a two-dimensional array of positive and ne ...

  7. poj 1050 To the Max 最大子矩阵和 经典dp

    To the Max   Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

  8. poj - 1050 - To the Max(dp)

    题意:一个N * N的矩阵,求子矩阵的最大和(N <= 100, -127 <= 矩阵元素 <= 127). 题目链接:http://poj.org/problem?id=1050 ...

  9. poj 1050 To the Max(线性dp)

    题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...

随机推荐

  1. Luogu 4069 [SDOI2016]游戏

    BZOJ 4515 树链剖分 + 李超线段树 要求支持区间插入一条线段,然后查询一个区间内的最小值.可以使用李超线段树解决,因为要维护一个区间内的最小值,所以每一个结点再维护一个$res$表示这个区间 ...

  2. 4.python 系统批量运维管理器之paramiko模块

    paramiko paramiko是ssh服务最经常使用的模块,遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接. paramiko实现ssh2不外乎两个角度:SSH客户端与服务端 SS ...

  3. python核心编程第5章课后题答案

    5-8Geometry import math def sqcube(): s = float(raw_input('enter length of one side: ')) print 'the ...

  4. URAL 1104 Don’t Ask Woman about Her Age(数论)

    题目链接 题意 : 给你一个数,未知进制,然后让你从2到36进制中找出一个最小的进制K,满足给你的这个数作为k进制时能够整除k-1. 思路 : 有一个公式,(a*b^n)mod(b-1)=a: 给定你 ...

  5. Ubuntu 16.04 安装jdk

    Ubuntu 16.04 安装jdk 准备工作 安装版本:jdk-8u91-linux-x64.tar.gz 官方下载 创建目录作为JDK的安装目录,这里选择安装位置为:/usr/java/ sudo ...

  6. JavaScript补充:BOM(浏览器对象模型)

    一些公共对象.详细参考手册. 一.Window 对象 Window 对象表示浏览器中打开的窗口. 如果文档包含框架(<frame> 或 <iframe> 标签),浏览器会为 H ...

  7. 《PRC:更新项目汇总额》报错

    请求报红,日志如下: +---------------------------------------------------------------------------+ 项目: Version ...

  8. Entity Framework 6 初体验

    Entity Framework中有三种模式 Code First, Model First和Database First, Code First 是在EF4中新增的模式, 也跟NHibernate等 ...

  9. c#字符相似度对比

    字符串相似度算法使用 Levenshtein Distance算法(中文翻译:编辑距离算法) 这算法是由俄国科学家Levenshtein提出的. 下面使用C#实现 public class Leven ...

  10. SQL server T-sql语句查询执行顺序

    前言 数据库的查询执行,毋庸置疑是程序员必备的技能之一,然而数据库查询执行的过程绚烂多彩,却是很少被人了解,今天我们来深入了解下sql查询的来龙去脉,为查询的性能优化打个基础 这篇博客,摒弃查询优化性 ...