TensorFlow学习笔记4——变量共享
因为最近在研究生成对抗网络GAN,在读别人的代码时发现了 with tf.variable_scope(self.name_scope_conv, reuse = reuse): 这样一条语句,查阅官方文档时明白了这是TensorFlow的变量共享机制。
举个例子:当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生成的图像,判别器就尝试优化自己的网络结构来使自己输出0,如果接收到的是来自真实数据的图像,那么就尝试优化自己的网络结构来使自己输出1。也就是说,生成图像和真实图像经过判别器的时候,要共享同一套变量,所以TensorFlow引入了变量共享机制。
变量共享主要涉及到两个函数: tf.get_variable(<name>, <shape>, <initializer>) 和 tf.variable_scope(<scope_name>) 。
1. tf.get_variable(<name>, <shape>, <initializer>)
例如,我们搭建一个卷积层:
def conv_relu(input, kernel_shape, bias_shape):
# Create variable named "weights".
weights = tf.get_variable("weights", kernel_shape,
initializer=tf.random_normal_initializer())
# Create variable named "biases".
biases = tf.get_variable("biases", bias_shape,
initializer=tf.constant_initializer(0.0))
conv = tf.nn.conv2d(input, weights,
strides=[1, 1, 1, 1], padding='SAME')
return tf.nn.relu(conv + biases)
然后,我们调用两次:
input1 = tf.random_normal([1,10,10,32])
input2 = tf.random_normal([1,20,20,32])
x = conv_relu(input1, kernel_shape=[5, 5, 1, 32], bias_shape=[32])
x = conv_relu(x, kernel_shape=[5, 5, 32, 32], bias_shape = [32]) # This fails.
会发现报错信息。因为执行的命令不明确:第二次调用时是创建一套新的变量(weights,biases)还是再次使用已存在的那一套变量(第一次调用时生成的weights和biases)呢?
这时就需要用到第二个函数: tf.variable_scope(<scope_name>)
2. tf.variable_scope(<scope_name>)
请看例子:
def my_image_filter(input_images):
with tf.variable_scope("conv1"):
# Variables created here will be named "conv1/weights", "conv1/biases".
relu1 = conv_relu(input_images, [5, 5, 1, 32], [32])
with tf.variable_scope("conv2"):
# Variables created here will be named "conv2/weights", "conv2/biases".
return conv_relu(relu1, [5, 5, 32, 32], [32])
在不同的域内会生成不同的变量。
如果想要变量共享,TensorFlow提供了两种方法:
1. 设置 reuse=True
with tf.variable_scope("model"):
output1 = my_image_filter(input1)
with tf.variable_scope("model", reuse=True):
output2 = my_image_filter(input2)
2. 调用 scope.reuse_variables()
with tf.variable_scope("model") as scope:
output1 = my_image_filter(input1)
scope.reuse_variables()
output2 = my_image_filter(input2)
注:在官方文档的最后有这样一段话:Since depending on exact string names of scopes can feel dangerous, it's also possible to initialize a variable scope based on another one:
with tf.variable_scope("model") as scope:
output1 = my_image_filter(input1)
with tf.variable_scope(scope, reuse=True):
output2 = my_image_filter(input2)
TensorFlow学习笔记4——变量共享的更多相关文章
- TensorFlow学习笔记3——变量共享
因为最近在研究生成对抗网络GAN,在读别人的代码时发现了 with tf.variable_scope(self.name_scope_conv, reuse = reuse): 这样一条语句,查阅官 ...
- tensorflow学习笔记二----------变量
tensorflow里面的变量表示,需要使用特定的语法进行.如果想构造一个行(列)向量,需要调用Variable函数进行.对两个变量进行操作,也要调用相应的函数. import tensorflow ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- tensorflow学习笔记——自编码器及多层感知器
1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...
- TensorFlow学习笔记(一)
[TensorFlow API](https://www.tensorflow.org/versions/r0.12/how_tos/variable_scope/index.html) Tensor ...
- Tensorflow学习笔记2019.01.22
tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- tensorflow学习笔记(1)-基本语法和前向传播
tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程. 图中的constant是个常量 计 ...
- TensorFlow学习笔记——LeNet-5(训练自己的数据集)
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...
随机推荐
- 见微知著(三):解析ctf中的pwn--Fastbin和bins的溢出
1月1号写博客,也是不容易呀!大家新年快乐呀! 先从Fastbin看起,是2015年RCTF的一道pwn题,shaxian.先看看代码的大致流程,随便输入一下: 这个题目关键之处在于堆溢出,对于堆种类 ...
- 揭秘响应式web设计
0.引言 响应式web设计的作用主要使网页能在不同小大的显示窗口下依然优雅.当前的显示窗口有pc,ipad,iphone以及一些其他的设备.不同的显示窗口的分辨率各不相同,如何在不同的分辨率的情况下 ...
- lua 脚本之高级篇 (面向对象的完全支持),有性能问题。
---------------------------------------------------------- --面向对象核心库 ------------------------------- ...
- 【R笔记】R语言中的字符串处理函数
内容概览 尽管R是一门以数值向量和矩阵为核心的统计语言,但字符串同样极为重要.从医疗研究数据里的出生日期到文本挖掘的应用,字符串数据在R程序中使用的频率非常高.R语言提供了很多字符串操作函数,本文仅简 ...
- IO 流(File)
1.创建文件 package com.ic.demo01; import java.io.File; import java.io.IOException; public class FileDemo ...
- 在energia中添加新的库
很多时候energia提供的库不能够满足我们的需要,这个时候我们就要自己添加库到energia中.方法如下: 在energia目录下找到hardware目录 选择对应的单片机型号文件夹进入 进入lib ...
- hdu Ignatius and the Princess II
Ignatius and the Princess II Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Ja ...
- JavaScript的map循环、forEach循环、filter循环、reduce循环、reduceRight循环
1.map循环 let arr=[1,2,3,4]; arr.map(function(value,key,arr){ //值,索引,数组(默认为选定数组) return item; //如果没有re ...
- SQLSERVER表联结(INNER JOIN,LEFT JOIN,RIGHT JOIN,FULL JOIN,CROSS JOIN,CROSS APPLY,OUTER APPLY)
1 常用表联结(inner join,left join,right join,full join,cross join) if object_id(N'table1',N'U') is not nu ...
- 怎样编写高效android代码
基于Android相关设备作为嵌入式设备范畴,在书写App应用的时候要格外关注效率.而且受电池电量的限制.这就导致嵌入式设备有诸多考虑.有限处理能力.因此就要求我们尽量去写高效的代码. 本文讨论了非常 ...