【洛谷 P4777】 【模板】扩展中国剩余定理(EXCRT)
注意一下::
题目是
\]
我总是习惯性的把a和b交换位置,调了好久没调出来,\(qwq\)。
本题解是按照
$$x≡a_i\pmod {b_i}$$
讲述的,请注意
本题\(m_i\)不一定两两互质,所以中国剩余定理在本题不再适用。
说是扩展中国剩余定理,其实好像和中国剩余定理关系不大。
使用数学归纳法,如果我们已经知道了前\(k-1\)个方程组构成的一个解,记作\(x\),记\(m=\Pi_{i=1}^{k-1}m_i\),则\(x+i*m(i∈Z)\)是前\(k-1\)个方程的通解,如果这个不懂,就得去好好学学同余了。考虑对于第\(k\)个方程,求出一个\(t\),使得
\]
然后
\]
综上,循环\(n\)次即可。
讲一下如何用扩展欧几里德解线性同余方程。
大家都知道(假设大家都知道),\(exgcd\)可以求出方程
\]
的一组整数解。
我们要解的线性同余方程是这样的:
\]
可以写成这个形式:
\]
若方程有解,则
\]
一定成立。题目保证有解,无需特判。
于是我们用扩欧求出
\]
的一组解,然后等式两边同时除以\(gcd\)再乘以\(b\),得
\]
得解。
还有个细节,就是乘的时候会爆long long,而__int128这个东西比赛时是不可用的,所以还是老老实实打快\((gui)\)速乘吧。
其实和快速幂差不多的。
ll Slow_Mul(ll n, ll k, ll mod){
ll ans = 0;
while(k){
if(k & 1) ans = (ans + n) % mod;
k >>= 1;
n = (n + n) % mod;
}
return ans;
}
完整\(AC\)代码:
#include <cstdio>
const int MAXN = 100010;
typedef long long ll;
int n;
ll a[MAXN], b[MAXN], ans, M, x, y;
ll exgcd(ll a, ll b, ll &x, ll &y){
if(!b){ x = 1; y = 0; return a; }
ll d = exgcd(b, a % b, x, y);
ll z = x; x = y; y = z - (a / b) * y;
return d;
}
ll Slow_Mul(ll n, ll k, ll mod){
ll ans = 0;
while(k){
if(k & 1) ans = (ans + n) % mod;
k >>= 1;
n = (n + n) % mod;
}
return ans;
}
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%lld%lld", &b[i], &a[i]);
ans = a[1];
M = b[1];
for(int i = 2; i <= n; ++i){
ll B = ((a[i] - ans) % b[i] + b[i]) % b[i];
ll GCD = exgcd(M, b[i], x, y);
x = Slow_Mul(x, B / GCD, b[i]);
ans += M * x;
M *= b[i] / GCD;
ans = (ans + M) % M;
}
printf("%lld\n", ans);
return 0;
}
【洛谷 P4777】 【模板】扩展中国剩余定理(EXCRT)的更多相关文章
- [洛谷P4777] [模板] 扩展中国剩余定理
扩展中国剩余定理,EXCRT. 题目传送门 重温一下中国剩余定理. 中国剩余定理常被用来解线性同余方程组: x≡a[1] (mod m[1]) x≡a[2] (mod m[2]) ...... x≡a ...
- 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结
中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...
- 扩展中国剩余定理 (exCRT) 的证明与练习
原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...
- 扩展中国剩余定理 (ExCRT)
扩展中国剩余定理 (ExCRT) 学习笔记 预姿势: 扩展中国剩余定理和中国剩余定理半毛钱关系都没有 问题: 求解线性同余方程组: \[ f(n)=\begin{cases} x\equiv a_1\ ...
- 扩展中国剩余定理 exCRT 学习笔记
前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这 ...
- [洛谷P4720] [模板] 扩展卢卡斯
题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...
- 扩展中国剩余定理(EXCRT)快速入门
问题 传送门 看到这个问题感觉很难??? 不用怕,往下看就好啦 假如你不会CRT也没关系 EXCRT大致思路 先考虑将方程组两两联立解开,如先解第一个与第二个,再用第一个与第二个的通解来解第三个... ...
- [Luogu P4777] 【模板】扩展中国剩余定理(EXCRT) (扩展中国剩余定理)
题面 传送门:洛咕 Solution 真*扩展中国剩余定理模板题.我怎么老是在做模板题啊 但是这题与之前不同的是不得不写龟速乘了. 还有两个重点 我们在求LCM的时候,记得先/gcd再去乘另外那个数, ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT
EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... ...
随机推荐
- 【Luogu P4644】Cleaning Shifts
题目 给定 \(n\) 个区间 \([a_i, b_i]\), 花费为 \(c_i\), 求覆盖 \([L, R]\) 区间的所有整数的最小花费. \(0\le n \le 10^4, 0\le L, ...
- 揭秘css
这是我看到非常好的一本电子教程,可以当参考手册使用,链接
- PHP 头像上传
嘻嘻,自从圣诞节过后,就一直懒散,这几天也因为是太过于繁忙的原因,感觉好久都没有出来冒冒泡,诶... 为了生活一直在奋斗,作为一名前端开发工程师,我现在越来越迷茫了,都不知道现在自己到底算什么了? 会 ...
- 一个关于sql更新的小笔记
一直在sqlserver下写东西,突然用mysql有些语法发生了改变,有点折腾 (MS SQL Server)语句:update A set a.Name = b.Name from A ...
- Jmeter——小性能用例
1.添加默认值,将代理服务器写入 2.添加HTTP请求头,将域名部分用变量形式写入:${__CSVRead(D:/number.txt,0)},这是为了查询不同页面,在D:/number.txt路径下 ...
- 验证码 java实现的程序
makeCheckcode.java package pic; import java.awt.Color; import java.awt.Font; import java.awt.Graphic ...
- Web负载均衡技术
Web负载均衡(Load Balancing),简单地说就是给我们的服务器集群分配“工作任务”,而采用恰当的分配方式,对于保护处于后端的Web服务器来说,非常重要. 负载均衡的策略有很多,我们从简单的 ...
- Linux shell 整数运算 let [ ] (( )) expr以及 浮点数 bc用法(转)
Abstract : 1) Linux shell 中使用 let , [ ] ,(( )) 三种运算符操作 shell 变量进行简单的基本运算:2)Linux shell 中使用 expr 与 b ...
- git 创建分支并提交到服务器对应的新分支
1.切换到源分支 git checkout test 2.在源分支的基础上创建新分支 git branch test1 3.提交到远程分支 git pull 会自动提示下面的命令 git pull - ...
- DFS(6)——hdu1342Lotto
一.题目回顾 题目链接:Lotto Sample Input 7 1 2 3 4 5 6 7 8 1 2 3 5 8 13 21 34 0 Sample Output 1 2 3 4 5 6 1 2 ...