【洛谷 P4777】 【模板】扩展中国剩余定理(EXCRT)
注意一下::
题目是
\]
我总是习惯性的把a和b交换位置,调了好久没调出来,\(qwq\)。
本题解是按照
$$x≡a_i\pmod {b_i}$$
讲述的,请注意
本题\(m_i\)不一定两两互质,所以中国剩余定理在本题不再适用。
说是扩展中国剩余定理,其实好像和中国剩余定理关系不大。
使用数学归纳法,如果我们已经知道了前\(k-1\)个方程组构成的一个解,记作\(x\),记\(m=\Pi_{i=1}^{k-1}m_i\),则\(x+i*m(i∈Z)\)是前\(k-1\)个方程的通解,如果这个不懂,就得去好好学学同余了。考虑对于第\(k\)个方程,求出一个\(t\),使得
\]
然后
\]
综上,循环\(n\)次即可。
讲一下如何用扩展欧几里德解线性同余方程。
大家都知道(假设大家都知道),\(exgcd\)可以求出方程
\]
的一组整数解。
我们要解的线性同余方程是这样的:
\]
可以写成这个形式:
\]
若方程有解,则
\]
一定成立。题目保证有解,无需特判。
于是我们用扩欧求出
\]
的一组解,然后等式两边同时除以\(gcd\)再乘以\(b\),得
\]
得解。
还有个细节,就是乘的时候会爆long long,而__int128这个东西比赛时是不可用的,所以还是老老实实打快\((gui)\)速乘吧。
其实和快速幂差不多的。
ll Slow_Mul(ll n, ll k, ll mod){
ll ans = 0;
while(k){
if(k & 1) ans = (ans + n) % mod;
k >>= 1;
n = (n + n) % mod;
}
return ans;
}
完整\(AC\)代码:
#include <cstdio>
const int MAXN = 100010;
typedef long long ll;
int n;
ll a[MAXN], b[MAXN], ans, M, x, y;
ll exgcd(ll a, ll b, ll &x, ll &y){
if(!b){ x = 1; y = 0; return a; }
ll d = exgcd(b, a % b, x, y);
ll z = x; x = y; y = z - (a / b) * y;
return d;
}
ll Slow_Mul(ll n, ll k, ll mod){
ll ans = 0;
while(k){
if(k & 1) ans = (ans + n) % mod;
k >>= 1;
n = (n + n) % mod;
}
return ans;
}
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%lld%lld", &b[i], &a[i]);
ans = a[1];
M = b[1];
for(int i = 2; i <= n; ++i){
ll B = ((a[i] - ans) % b[i] + b[i]) % b[i];
ll GCD = exgcd(M, b[i], x, y);
x = Slow_Mul(x, B / GCD, b[i]);
ans += M * x;
M *= b[i] / GCD;
ans = (ans + M) % M;
}
printf("%lld\n", ans);
return 0;
}
【洛谷 P4777】 【模板】扩展中国剩余定理(EXCRT)的更多相关文章
- [洛谷P4777] [模板] 扩展中国剩余定理
扩展中国剩余定理,EXCRT. 题目传送门 重温一下中国剩余定理. 中国剩余定理常被用来解线性同余方程组: x≡a[1] (mod m[1]) x≡a[2] (mod m[2]) ...... x≡a ...
- 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结
中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...
- 扩展中国剩余定理 (exCRT) 的证明与练习
原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...
- 扩展中国剩余定理 (ExCRT)
扩展中国剩余定理 (ExCRT) 学习笔记 预姿势: 扩展中国剩余定理和中国剩余定理半毛钱关系都没有 问题: 求解线性同余方程组: \[ f(n)=\begin{cases} x\equiv a_1\ ...
- 扩展中国剩余定理 exCRT 学习笔记
前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这 ...
- [洛谷P4720] [模板] 扩展卢卡斯
题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...
- 扩展中国剩余定理(EXCRT)快速入门
问题 传送门 看到这个问题感觉很难??? 不用怕,往下看就好啦 假如你不会CRT也没关系 EXCRT大致思路 先考虑将方程组两两联立解开,如先解第一个与第二个,再用第一个与第二个的通解来解第三个... ...
- [Luogu P4777] 【模板】扩展中国剩余定理(EXCRT) (扩展中国剩余定理)
题面 传送门:洛咕 Solution 真*扩展中国剩余定理模板题.我怎么老是在做模板题啊 但是这题与之前不同的是不得不写龟速乘了. 还有两个重点 我们在求LCM的时候,记得先/gcd再去乘另外那个数, ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT
EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... ...
随机推荐
- 通过数据库恢复SharePoint网站
SharePoint网站一般包含很多个数据库,最主要的有3个,分别是SharePoint_Admin_Content(管理中心数据库),SharePoint_Config(配置数据库)和 ...
- c#根据ip获取城市地址
用的API是百度.新浪.淘宝: 1.首先是一个检测获取的值是不是中文的方法,因为有的ip只能识别出来某省,而城市名称则为空返回的json里会出现null或undefined. public stati ...
- howto:在构建基于debian的docker基础镜像时,更换国内包源
debian经常被用作构建应用镜像的基础镜像,如微软在构建linux下的dotnetcore基础镜像时,提供了基于debian 8(jessie)和debian 9(stretch)的镜像. 由于这些 ...
- 29、phonegap入门
0. PhoneGap介绍 0.1 什么是PhoneGap? PhoneGap是一个基于HTML.CSS.JS创建跨平台移动应程序的快速开发平台.与传统Web应用不同的是,它使开发者能够利用iPho ...
- C# 获取当前日期当年的周数
这几天跨年,项目上遇到了一个周数计算的问题. 2016年的元旦是周五开始的,之前系统计算的是属于15年的第53个周,但是年份已经到了16年了. 公司要求从1月1号周五开始算作16年的第一个周,今天1月 ...
- Python 3基础教程29-os模块
本文介绍os模块,主要是介绍一些文件的相关操作. 你还有其他方法去查看os 1. help() 然后输入os 2. Python接口文档,前面提到的用浏览器打开的,os文件路径为:C:\Users\A ...
- 第一篇 Python安装与环境变量的配置
开发语言有很多种,为什么选Python? 先对各种开发语言做个初识和分类如下:高级语言:Python Java.PHP C# Go ruby C++... ---> 字节码低级语言:C.汇编 - ...
- 3、shader深度测试(Cull、ZWrite 、ZTest )
剔除和深度测试是渲染法线中的一个流程 Cull:默认情况下,Unity中给的所有Shader都是单面的,它都把反面的渲染给关闭掉了,如果你在开发的过程中需要使用到双面,只要把cull关闭(off)即可 ...
- Java IO学习--File类
一.File类 File类具备一定的误导性,可能容易认为它指代的是文件,实际并非如此,它既能代表一个特定文件的名称,又能表示一个目录下一组文件的名称.简而言之,File类是文件或者目录路径名的抽象表示 ...
- Laxcus大数据管理系统2.0(4)- 第一章 基础概述 1.3 节点
1.3 节点 按照我们给Laxcus集群的设计定义,Laxcus集群被分为内部和外部两个网络环境.内部网络由集群的所有权人负责实施和管理,为保证集群能够有效可靠运行,需要遵守一系列的集群部署和管理规定 ...