题目:

A city's skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Now suppose you aregiven the locations and height of all the buildings as shown on a cityscape photo (Figure A), write a program to output the skyline formed by these buildings collectively (Figure B).

The geometric information of each building is represented by a triplet of integers [Li, Ri, Hi], where Li and Ri are the x coordinates of the left and right edge of the ith building, respectively, and Hi is its height. It is guaranteed that 0 ≤ Li, Ri ≤ INT_MAX0 < Hi ≤ INT_MAX, and Ri - Li > 0. You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height 0.

For instance, the dimensions of all buildings in Figure A are recorded as: [ [2 9 10], [3 7 15], [5 12 12], [15 20 10], [19 24 8] ] .

The output is a list of "key points" (red dots in Figure B) in the format of [ [x1,y1], [x2, y2], [x3, y3], ... ] that uniquely defines a skyline. A key point is the left endpoint of a horizontal line segment. Note that the last key point, where the rightmost building ends, is merely used to mark the termination of the skyline, and always has zero height. Also, the ground in between any two adjacent buildings should be considered part of the skyline contour.

For instance, the skyline in Figure B should be represented as:[ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ].

Notes:

  • The number of buildings in any input list is guaranteed to be in the range [0, 10000].
  • The input list is already sorted in ascending order by the left x position Li.
  • The output list must be sorted by the x position.
  • There must be no consecutive horizontal lines of equal height in the output skyline. For instance, [...[2 3], [4 5], [7 5], [11 5], [12 7]...] is not acceptable; the three lines of height 5 should be merged into one in the final output as such: [...[2 3], [4 5], [12 7], ...]

链接: http://leetcode.com/problems/the-skyline-problem/

题解:

很经典的题目。一开始的想法是遍历一遍数组,然后把所有关键点及其长度计算出来,再遍历一遍数组,找到所有结果。没有尝试。

后来研究了Discuss,发现有两种做法:

  1. 一种是用Mergesort的原理。
    1. 首先base case是当我们递归函数的lo == hi时,这时只有一个building,由一个building形成一个skyline。这里我们的两个关键点是(left, height)以及(right,0)。
    2. 有了skyline之后我们就可以进行推广。每个skyline都已经是一个left sorted的doubly linkedlist。 每次由两个skyline merge成一个更大的skyline,最后一步步得出结果。 这里merge函数跟"Merge Two Sorted List" 很象。要注意merge时的各种判断,我们需要current height1和current height2来cache skyline1和skyline2的当前高度。而最后加入结果的height为Math.max(skyline1 current height,skyline2 current height),加入结果的index为两个skyline元素中最左边的那一个,之后还要把处理过的元素从skyline1或者2,或者1和2里去除掉。所以这里用doubly-linked list很方便,其实用queue或者deque也能有一样的效果。
    3. merge是一个O(n)的操作,而总算法的时间复杂度是O(nlogn),空间复杂度是O(n)。
  2. 另外一种是维护一个heap,用Sweepling Algorithm在heap里面增删改,最后输出结果。

Divide and Conquer:

Time Complexity - O(nlogn), Space Complexity - O(n)

public class Solution {
public List<int[]> getSkyline(int[][] buildings) {
if(buildings == null || buildings.length == 0)
return new LinkedList<int[]>();
return getSkyline(buildings, 0, buildings.length - 1);
} private LinkedList<int[]> getSkyline(int[][] buildings, int lo, int hi) {
if(lo < hi) {
int mid = lo + (hi - lo) / 2;
return mergeSkylines(getSkyline(buildings, lo, mid), getSkyline(buildings, mid + 1, hi));
} else { // lo == hi, base case, add one building to skyline
LinkedList<int[]> skyline = new LinkedList<int[]>();
skyline.add(new int[]{buildings[lo][0], buildings[lo][2]});
skyline.add(new int[]{buildings[lo][1], 0});
return skyline;
}
} private LinkedList<int[]> mergeSkylines(LinkedList<int[]> skyline1, LinkedList<int[]> skyline2) { // merge two Skylines
LinkedList<int[]> skyline = new LinkedList<int[]>();
int height1 = 0, height2 = 0; while(skyline1.size() > 0 && skyline2.size() > 0) {
int index = 0, height = 0;
if(skyline1.getFirst()[0] < skyline2.getFirst()[0]) {
index = skyline1.getFirst()[0];
height1 = skyline1.getFirst()[1];
height = Math.max(height1, height2);
skyline1.removeFirst();
} else if (skyline1.getFirst()[0] > skyline2.getFirst()[0]) {
index = skyline2.getFirst()[0];
height2 = skyline2.getFirst()[1];
height = Math.max(height1, height2);
skyline2.removeFirst();
} else {
index = skyline1.getFirst()[0];
height1 = skyline1.getFirst()[1];
height2 = skyline2.getFirst()[1];
height = Math.max(height1, height2);
skyline1.removeFirst();
skyline2.removeFirst();
}
if(skyline.size() == 0 || height != skyline.getLast()[1])
skyline.add(new int[]{index, height});
}
skyline.addAll(skyline1);
skyline.addAll(skyline2); return skyline;
} }

Sweeping line + Heap:  (二刷再解决)

二刷:

二刷依然是使用了Divide and Conquer。使用了ArrayList来保存结果,虽然代码长一点,但速度更快,并且更容易理解一点点。

要注意的还是在merge的时候:

  1. 我们仍然要保存之前的height1和height2两个变量。
  2. 对skyline1和skyline2中的第一个点p1和p2,我们分三种情况
    1. p1[0] < p2[0],这时候p1在p2之前出现,我们更新height1 = p1[1],先处理p1
    2. p1[0] > p2[0],这时候p1在p2之后出现,我们更新height2 = p2[1],先处理p2
    3. 否则两点同时出现,我们更新height1和height2,同时处理两个点
    4. 在height = max(height1, height2),并且height != res.get(res.size() - 1)时,也就是当前这个点的高度不等于之前点的高度,我们把这个点加入到结果集res中。这里的一个小边界条件是当res.size() == 0时,我们也加入这个点[index, height]。
  3. 在merge的最后我们要判断一下是否skyline1或者skyline2中所有的点都计算过了。 假如还有剩余点,我们对其进行处理。

也可以用一些特殊的数据结构来做,比如PQ + Sweeping line, Treap, Fenwick Tree等等。 下次再研究。

Java:

Time Complexity - O(nlogn), Space Complexity - O(n)

public class Solution {
public List<int[]> getSkyline(int[][] buildings) {
if (buildings == null || buildings.length == 0) return new ArrayList<int[]>();
return getSkyline(buildings, 0, buildings.length - 1);
} private List<int[]> getSkyline(int[][] buildings, int lo, int hi) {
if (lo < hi) {
int mid = lo + (hi - lo) / 2;
return mergeSkylines(getSkyline(buildings, lo, mid), getSkyline(buildings, mid + 1, hi));
} else {
List<int[]> res = new ArrayList<>();
res.add(new int[] {buildings[lo][0], buildings[lo][2]});
res.add(new int[] {buildings[lo][1], 0});
return res;
}
} private List<int[]> mergeSkylines(List<int[]> skyline1, List<int[]> skyline2) {
List<int[]> res = new ArrayList<>();
int i = 0, j = 0;
int index = 0, height = 0, height1 = 0, height2 = 0; while (i < skyline1.size() && j < skyline2.size()) {
int[] p1 = skyline1.get(i);
int[] p2 = skyline2.get(j);
if (p1[0] < p2[0]) {
index = p1[0];
height1 = p1[1];
i++;
} else if (p1[0] > p2[0]) {
index = p2[0];
height2 = p2[1];
j++;
} else {
index = p1[0];
height1 = p1[1];
height2 = p2[1];
i++;
j++;
}
height = Math.max(height1, height2);
if (res.size() == 0 || height != res.get(res.size() - 1)[1]) res.add(new int[] {index, height});
} if (i < skyline1.size()) {
for (int k = i; k < skyline1.size(); k++) {
int[] p1 = skyline1.get(k);
if (p1[1] != res.get(res.size() - 1)[1]) res.add(p1);
}
} else if (j < skyline2.size()){
for (int k = j; k < skyline2.size(); k++) {
int[] p2 = skyline2.get(k);
if (p2[1] != res.get(res.size() - 1)[1]) res.add(p2);
}
}
return res;
}
}

Reference:

https://en.wikipedia.org/wiki/Sweep_line_algorithm#Applications

http://www.algorithmist.com/index.php/UVa_105

http://www.cnblogs.com/easonliu/p/4531020.html

https://cseweb.ucsd.edu/classes/sp04/cse101/skyline.pdf

http://sandrasi-sw.blogspot.com/2012/12/the-skyline-problem.html

http://www.geeksforgeeks.org/divide-and-conquer-set-7-the-skyline-problem/

https://briangordon.github.io/2014/08/the-skyline-problem.html

https://leetcode.com/discuss/61274/17-line-log-time-space-accepted-easy-solution-explanations

https://leetcode.com/discuss/37630/my-c-code-using-one-priority-queue-812-ms

https://leetcode.com/discuss/37736/108-ms-17-lines-body-explained

https://leetcode.com/discuss/40963/share-my-divide-and-conquer-java-solution-464-ms

https://leetcode.com/discuss/54201/short-java-solution

https://leetcode.com/discuss/88149/java-solution-using-priority-queue-and-sweepline

218. The Skyline Problem的更多相关文章

  1. [LeetCode#218] The Skyline Problem

    Problem: A city's skyline is the outer contour of the silhouette formed by all the buildings in that ...

  2. [LeetCode] 218. The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  3. Java for LeetCode 218 The Skyline Problem【HARD】

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  4. 218. The Skyline Problem *HARD* -- 矩形重叠

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  5. LeetCode 218. The Skyline Problem 天际线问题(C++/Java)

    题目: A city's skyline is the outer contour of the silhouette formed by all the buildings in that city ...

  6. 218. The Skyline Problem (LeetCode)

    天际线问题,参考自: 百草园 天际线为当前线段的最高高度,所以用最大堆处理,当遍历到线段右端点时需要删除该线段的高度,priority_queue不提供删除的操作,要用unordered_map来标记 ...

  7. [LeetCode] The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  8. [LeetCode] The Skyline Problem

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  9. The Skyline Problem

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

随机推荐

  1. 《Web编程入门经典》

    在我还不知道网页的基础结构的时候,我找过很多本介绍Web基础的书籍,其中这本<Web编程入门经典>,我认为是最好的. 这本书内容很全面.逻辑很严谨.结构很清晰.语言文字浅显易懂. 看这本书 ...

  2. asp.net导出Excel 按照预定格式,以及解决导出乱码

    protected void ToExcel() { //新建一个Gridview,原因:避免当前窗口GridView外层没有直接跟form标签,从而避免“gridview1未包含在run='serv ...

  3. 全面理解BFC

    BFC 已经是一个耳听熟闻的词语了,网上有许多关于 BFC 的文章,介绍了如何触发 BFC 以及 BFC 的一些用处(如清浮动,防止 margin 重叠等).虽然我知道如何利用 BFC 解决这些问题, ...

  4. Python Generators vs Iterators

    http://stackoverflow.com/questions/2776829/difference-between-python-generators-vs-iterators iterato ...

  5. Demo学习: ClientEvents

    ClientEvents 在控件的ClientEvents属性里嵌入JS代码,增加了开发的灵活性. 分别在TUniPanel和TUniTimer的 ClientEvents事件里添加了JS代码: 1. ...

  6. xml学习总结(四)

    命名空间 (1)产生 问题:在不同的约束文档中,有不同好安逸的相同标记名称 解决办法 每个约束模式人当被赋予一个唯一的名称空间,每个名称空间可用一个唯一的URI表示 在XML实例中为来自不同模式文档的 ...

  7. javac mac 终端乱码

    java和javac在简体中文的Mac OSX的终端(Terminal.app)环境下,默认是以GBK编码的中文输出各种诸如语法错误,数组访问越界之类的信息.但是,Mac的终端的默认编码是UTF-8, ...

  8. asp.net web form中 用attribute实现权限验证方式

    以前项目的代码比较陈旧,今天抽空优化了一下.作为记录. 以前每次请求一个方法都要验证是否登录 if xxx等  现在通过global文件中的改进 反射这个方法的属性是否需要权限 要的话先验证权限.以下 ...

  9. WPF简单入门总结

    WPF简单总结 最近看了点关于WPF的东西,总结了点点入门的东西. XAML语法基础 1.  定义样式 <Window.Resources><!--窗体资源的定义--> < ...

  10. Servlet一次乱码排查后的总结(转)

    原文地址:http://my.oschina.net/looly/blog/287255 由来 在写一个小小的表单提交功能的时候,出现了乱码,很奇怪request上来的参数全部是乱码,而从数据库查询出 ...