218. The Skyline Problem
题目:
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Now suppose you aregiven the locations and height of all the buildings as shown on a cityscape photo (Figure A), write a program to output the skyline formed by these buildings collectively (Figure B).


The geometric information of each building is represented by a triplet of integers [Li, Ri, Hi], where Li and Ri are the x coordinates of the left and right edge of the ith building, respectively, and Hi is its height. It is guaranteed that 0 ≤ Li, Ri ≤ INT_MAX, 0 < Hi ≤ INT_MAX, and Ri - Li > 0. You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height 0.
For instance, the dimensions of all buildings in Figure A are recorded as: [ [2 9 10], [3 7 15], [5 12 12], [15 20 10], [19 24 8] ] .
The output is a list of "key points" (red dots in Figure B) in the format of [ [x1,y1], [x2, y2], [x3, y3], ... ] that uniquely defines a skyline. A key point is the left endpoint of a horizontal line segment. Note that the last key point, where the rightmost building ends, is merely used to mark the termination of the skyline, and always has zero height. Also, the ground in between any two adjacent buildings should be considered part of the skyline contour.
For instance, the skyline in Figure B should be represented as:[ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ].
Notes:
- The number of buildings in any input list is guaranteed to be in the range
[0, 10000]. - The input list is already sorted in ascending order by the left x position
Li. - The output list must be sorted by the x position.
- There must be no consecutive horizontal lines of equal height in the output skyline. For instance,
[...[2 3], [4 5], [7 5], [11 5], [12 7]...]is not acceptable; the three lines of height 5 should be merged into one in the final output as such:[...[2 3], [4 5], [12 7], ...]
链接: http://leetcode.com/problems/the-skyline-problem/
题解:
很经典的题目。一开始的想法是遍历一遍数组,然后把所有关键点及其长度计算出来,再遍历一遍数组,找到所有结果。没有尝试。
后来研究了Discuss,发现有两种做法:
- 一种是用Mergesort的原理。
- 首先base case是当我们递归函数的lo == hi时,这时只有一个building,由一个building形成一个skyline。这里我们的两个关键点是(left, height)以及(right,0)。
- 有了skyline之后我们就可以进行推广。每个skyline都已经是一个left sorted的doubly linkedlist。 每次由两个skyline merge成一个更大的skyline,最后一步步得出结果。 这里merge函数跟"Merge Two Sorted List" 很象。要注意merge时的各种判断,我们需要current height1和current height2来cache skyline1和skyline2的当前高度。而最后加入结果的height为Math.max(skyline1 current height,skyline2 current height),加入结果的index为两个skyline元素中最左边的那一个,之后还要把处理过的元素从skyline1或者2,或者1和2里去除掉。所以这里用doubly-linked list很方便,其实用queue或者deque也能有一样的效果。
- merge是一个O(n)的操作,而总算法的时间复杂度是O(nlogn),空间复杂度是O(n)。
- 另外一种是维护一个heap,用Sweepling Algorithm在heap里面增删改,最后输出结果。
Divide and Conquer:
Time Complexity - O(nlogn), Space Complexity - O(n)
public class Solution {
public List<int[]> getSkyline(int[][] buildings) {
if(buildings == null || buildings.length == 0)
return new LinkedList<int[]>();
return getSkyline(buildings, 0, buildings.length - 1);
}
private LinkedList<int[]> getSkyline(int[][] buildings, int lo, int hi) {
if(lo < hi) {
int mid = lo + (hi - lo) / 2;
return mergeSkylines(getSkyline(buildings, lo, mid), getSkyline(buildings, mid + 1, hi));
} else { // lo == hi, base case, add one building to skyline
LinkedList<int[]> skyline = new LinkedList<int[]>();
skyline.add(new int[]{buildings[lo][0], buildings[lo][2]});
skyline.add(new int[]{buildings[lo][1], 0});
return skyline;
}
}
private LinkedList<int[]> mergeSkylines(LinkedList<int[]> skyline1, LinkedList<int[]> skyline2) { // merge two Skylines
LinkedList<int[]> skyline = new LinkedList<int[]>();
int height1 = 0, height2 = 0;
while(skyline1.size() > 0 && skyline2.size() > 0) {
int index = 0, height = 0;
if(skyline1.getFirst()[0] < skyline2.getFirst()[0]) {
index = skyline1.getFirst()[0];
height1 = skyline1.getFirst()[1];
height = Math.max(height1, height2);
skyline1.removeFirst();
} else if (skyline1.getFirst()[0] > skyline2.getFirst()[0]) {
index = skyline2.getFirst()[0];
height2 = skyline2.getFirst()[1];
height = Math.max(height1, height2);
skyline2.removeFirst();
} else {
index = skyline1.getFirst()[0];
height1 = skyline1.getFirst()[1];
height2 = skyline2.getFirst()[1];
height = Math.max(height1, height2);
skyline1.removeFirst();
skyline2.removeFirst();
}
if(skyline.size() == 0 || height != skyline.getLast()[1])
skyline.add(new int[]{index, height});
}
skyline.addAll(skyline1);
skyline.addAll(skyline2);
return skyline;
}
}
Sweeping line + Heap: (二刷再解决)
二刷:
二刷依然是使用了Divide and Conquer。使用了ArrayList来保存结果,虽然代码长一点,但速度更快,并且更容易理解一点点。
要注意的还是在merge的时候:
- 我们仍然要保存之前的height1和height2两个变量。
- 对skyline1和skyline2中的第一个点p1和p2,我们分三种情况
- p1[0] < p2[0],这时候p1在p2之前出现,我们更新height1 = p1[1],先处理p1
- p1[0] > p2[0],这时候p1在p2之后出现,我们更新height2 = p2[1],先处理p2
- 否则两点同时出现,我们更新height1和height2,同时处理两个点
- 在height = max(height1, height2),并且height != res.get(res.size() - 1)时,也就是当前这个点的高度不等于之前点的高度,我们把这个点加入到结果集res中。这里的一个小边界条件是当res.size() == 0时,我们也加入这个点[index, height]。
- 在merge的最后我们要判断一下是否skyline1或者skyline2中所有的点都计算过了。 假如还有剩余点,我们对其进行处理。
也可以用一些特殊的数据结构来做,比如PQ + Sweeping line, Treap, Fenwick Tree等等。 下次再研究。
Java:
Time Complexity - O(nlogn), Space Complexity - O(n)
public class Solution {
public List<int[]> getSkyline(int[][] buildings) {
if (buildings == null || buildings.length == 0) return new ArrayList<int[]>();
return getSkyline(buildings, 0, buildings.length - 1);
}
private List<int[]> getSkyline(int[][] buildings, int lo, int hi) {
if (lo < hi) {
int mid = lo + (hi - lo) / 2;
return mergeSkylines(getSkyline(buildings, lo, mid), getSkyline(buildings, mid + 1, hi));
} else {
List<int[]> res = new ArrayList<>();
res.add(new int[] {buildings[lo][0], buildings[lo][2]});
res.add(new int[] {buildings[lo][1], 0});
return res;
}
}
private List<int[]> mergeSkylines(List<int[]> skyline1, List<int[]> skyline2) {
List<int[]> res = new ArrayList<>();
int i = 0, j = 0;
int index = 0, height = 0, height1 = 0, height2 = 0;
while (i < skyline1.size() && j < skyline2.size()) {
int[] p1 = skyline1.get(i);
int[] p2 = skyline2.get(j);
if (p1[0] < p2[0]) {
index = p1[0];
height1 = p1[1];
i++;
} else if (p1[0] > p2[0]) {
index = p2[0];
height2 = p2[1];
j++;
} else {
index = p1[0];
height1 = p1[1];
height2 = p2[1];
i++;
j++;
}
height = Math.max(height1, height2);
if (res.size() == 0 || height != res.get(res.size() - 1)[1]) res.add(new int[] {index, height});
}
if (i < skyline1.size()) {
for (int k = i; k < skyline1.size(); k++) {
int[] p1 = skyline1.get(k);
if (p1[1] != res.get(res.size() - 1)[1]) res.add(p1);
}
} else if (j < skyline2.size()){
for (int k = j; k < skyline2.size(); k++) {
int[] p2 = skyline2.get(k);
if (p2[1] != res.get(res.size() - 1)[1]) res.add(p2);
}
}
return res;
}
}

Reference:
https://en.wikipedia.org/wiki/Sweep_line_algorithm#Applications
http://www.algorithmist.com/index.php/UVa_105
http://www.cnblogs.com/easonliu/p/4531020.html
https://cseweb.ucsd.edu/classes/sp04/cse101/skyline.pdf
http://sandrasi-sw.blogspot.com/2012/12/the-skyline-problem.html
http://www.geeksforgeeks.org/divide-and-conquer-set-7-the-skyline-problem/
https://briangordon.github.io/2014/08/the-skyline-problem.html
https://leetcode.com/discuss/61274/17-line-log-time-space-accepted-easy-solution-explanations
https://leetcode.com/discuss/37630/my-c-code-using-one-priority-queue-812-ms
https://leetcode.com/discuss/37736/108-ms-17-lines-body-explained
https://leetcode.com/discuss/40963/share-my-divide-and-conquer-java-solution-464-ms
https://leetcode.com/discuss/54201/short-java-solution
https://leetcode.com/discuss/88149/java-solution-using-priority-queue-and-sweepline
218. The Skyline Problem的更多相关文章
- [LeetCode#218] The Skyline Problem
Problem: A city's skyline is the outer contour of the silhouette formed by all the buildings in that ...
- [LeetCode] 218. The Skyline Problem 天际线问题
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- Java for LeetCode 218 The Skyline Problem【HARD】
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- 218. The Skyline Problem *HARD* -- 矩形重叠
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- LeetCode 218. The Skyline Problem 天际线问题(C++/Java)
题目: A city's skyline is the outer contour of the silhouette formed by all the buildings in that city ...
- 218. The Skyline Problem (LeetCode)
天际线问题,参考自: 百草园 天际线为当前线段的最高高度,所以用最大堆处理,当遍历到线段右端点时需要删除该线段的高度,priority_queue不提供删除的操作,要用unordered_map来标记 ...
- [LeetCode] The Skyline Problem 天际线问题
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- [LeetCode] The Skyline Problem
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- The Skyline Problem
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
随机推荐
- C#调用WinAPI及窗口过程
C#调用WINAPI及Windows窗口消息的发与送 最近在做一个餐饮项目(C#Winform),其中有一块是做点菜宝接口的对接,点菜宝的厂商提供了一个WX.exe的驱动程序,这个驱动程序无直接打开, ...
- Java中浮点数的基础知识
偶然查看Math.round的JDK public static int round(float a) { if (a != 0x1.fffffep-2f) // greatest float val ...
- mysql 导出表结构
mysql导出数据库各表结构,很简单只要一条命令即可: mysqldump -uxxx -d databasename [,table] > xxx.sql mysqldump中-d参数即为只导 ...
- iOS 非ARC基本内存管理系列 2-多对象内存管理(3) 利用@property来自动管理内存
iOS 基本内存管理-多对象内存管理(2)中可以看到涉及到对象的引用都要手动管理内存:每个对象都需要写如下代码 // 1.对要传入的"新车"对象car和目前Person类对象所拥有 ...
- 【C#】数据库备份及还原的实现代码【转载】
[转载]http://www.codesky.net/article/200908/128600.html C#数据库备份及还原1.在用户的配置时,我们需要列出当前局域网内所有的数据库服务器,并且要列 ...
- Apache+PHP+MySql 的安装及配置
每一项技术用的人多了,就会有人将其进行优化,做成一个简单.实用.大众化的工具,这对于初识者来说是非常方便的,但是对于长久学习或工作这方面的人技术人员来说是不可取的,所以还是要学习基础的实用方法.因此, ...
- YII千万级PV架构经验分享--理论篇
hello,大家好,我是方少,现在想象一下这样一个情景,这是一个很惬意的季节,是一个可以随意乱穿的季节,两个人,一个穿羽绒服,一个穿热裤,小胡同里两人迎面走来,看到对方都哈哈大笑,前仰后合,笑完都甩一 ...
- Oracle非默认监听的处理会遇到的问题以及处理方法
第一种情况:只是修改默认端口 1.当前监听状态: C:\Windows\system32>lsnrctl status LSNRCTL for 64-bit Windows: Version 1 ...
- Servlet一次乱码排查后的总结(转)
原文地址:http://my.oschina.net/looly/blog/287255 由来 在写一个小小的表单提交功能的时候,出现了乱码,很奇怪request上来的参数全部是乱码,而从数据库查询出 ...
- Who needs an architect?---Martin Fowler
英文及译文下载链接:http://pan.baidu.com/share/link?shareid=163291504&uk=1428554614 1.文章主题总结 首先我们从文章的几个小标题 ...