Codeforces 612E - Square Root of Permutation
A permutation of length n is an array containing each integer from 1 to n exactly once. For example, q = [4, 5, 1, 2, 3] is a permutation. For the permutation q the square of permutation is the permutation p that p[i] = q[q[i]] for each i = 1… n. For example, the square of q = [4, 5, 1, 2, 3] is p = q^2 = [2, 3, 4, 5, 1].
This problem is about the inverse operation: given the permutation p you task is to find such permutation q that q^2 = p. If there are several such q find any of them.
Input
The first line contains integer n (1 ≤ n ≤ 106) — the number of elements in permutation p.
The second line contains n distinct integers p1, p2, …, pn (1 ≤ pi ≤ n) — the elements of permutation p.
Output
If there is no permutation q such that q2 = p print the number “-1”.
If the answer exists print it. The only line should contain n different integers qi (1 ≤ qi ≤ n) — the elements of the permutation q. If there are several solutions print any of them.
Sample test(s)
Input
4
2 1 4 3
Output
3 4 2 1
Input
4
2 1 3 4
Output
-1
Input
5
2 3 4 5 1
Output
4 5 1 2 3
数组表示的就是映射关系 如a[1] = 2;就表示为1 -> 2;但是题目给定是i -> (a[i]) -> a[j] (a[j] = a[a[i]]);现在我们知道i和a[j]要求的是a[i];
置换的预备知识:
(a1,a2,a3)表示a1->a2,a2->a3,a3->a1;由于映射为一一对应关系,具有可逆性;(求解的依据)
对于一个置换(a1…an)一定可以划分为若干个不相交的循环
如(2,1,4,3) 变成置换之后为(1,2)(3,4)
特别注意循环乘法之间拆合关系(逆推原始的循环)以及元素位置的改变(得到答案): ans[位置] = val;
对于循环里面的元素个数为奇数时,(a[1],a[2],a[3])(a[1],a[2],a[3]) = (a[1],a[3],a[2]);即 a[1]->a[2]->a[3] ==>a[1]->a[3];同理a[2]->a[3]->a[1] ==>a[2]->a[1]; a[3] ->a[2];扩展到size = 2k+1个数的循环相乘呢?很容易知道当下标从0开始时;每个数的位置变成了2*i%size;同时告诉我们,循环的大小为奇数时,可以由自己生成,所以不用去管奇数的是否配对;
为偶数时:如(a1,a2,a3,a4)^2 = (a1,a3)(a2,a4);这就告诉我们,当p中分解出来的一个循环的大小为偶数时,循环只能由一个2*n的循环分裂得到(那我们在你想得到答案时就需要两个2k大小的循环合并成一个大小为4k的循环),在这时判断是否无解;偶数大小的循环平方时个数二分;而奇数只是把同奇偶(以下标看奇偶)的合并在一起了;
在编码时,开始就是用了循环分解算法,分解成cnt个循环节;可能会怀疑为什么这就是在一个循环里面呢?依上面的置换乘积可以看出循环大小为奇数时,只是调换了元素的对应关系,但是并没有改变ai的值,所以我们只需按照这个调换关系,逆着推回去即可;(奇偶调换两次就等于没调换~~),如果是偶数,那么分裂后还在一个循环中的元素,之前一定在同一个循环中,所以只需能配对就可以得到配对的两个的父循环~~(逆推的原理,也是理解的关键)
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e6+;
int B[MAXN],vis[MAXN],ans[MAXN],id[MAXN];
vector<int> v[MAXN];
#define pb push_back
bool cmp(const vector<int> &a,const vector<int> &b)
{
return a.size() < b.size();
}
int main()
{
int i,n,cnt = ,tot = ;
cin>>n;
for(i = ;i <= n;i++)
scanf("%d",B+i);
for(i = ;i <= n;i++)if(vis[i] != ){
int tmp = i;
++cnt;
do{
vis[tmp] = ;
v[cnt].pb(tmp);
tmp = B[tmp];
}while(tmp != i);
}
sort(v+,v++cnt,cmp);
for(i = ;i <= cnt;i++){
int sz = v[i].size();
if(sz & ){
for(int k = ;k < sz;k++)
id[k*%sz] = v[i][k];
for(int k = ;k < sz;k++)
ans[id[k]] = id[(k+)%sz];
}
else if(sz == v[i+].size()){
for(int k = ;k < sz;k++){
ans[v[i][k]] = v[i+][k];
ans[v[i+][k]] = v[i][(k+)%sz];
}
i++;
}
else{
return puts("-1"),;
}
}
for(i = ;i <= n;i++){
printf("%d ",ans[i]);
}
}
- -
Codeforces 612E - Square Root of Permutation的更多相关文章
- Codeforces.612E.Square Root of Permutation(构造)
题目链接 \(Description\) 给定一个\(n\)的排列\(p_i\),求一个排列\(q_i\),使得对于任意\(1\leq i\leq n\),\(q_{q_i}=p_i\).无解输出\( ...
- codefroces 612E Square Root of Permutation
A permutation of length n is an array containing each integer from 1 to n exactly once. For example, ...
- [CF 612E]Square Root of Permutation
A permutation of length n is an array containing each integer from 1 to n exactly once. For example, ...
- Square Root of Permutation - CF612E
Description A permutation of length n is an array containing each integer from 1 to n exactly once. ...
- CF612E Square Root of Permutation
题目分析 我们首先模拟一下题意 假设有一个 \(q _1\) \(p\) \(a_1\) \(a_x\) \(a_{a_1}\) \(a_{a_x}\) \(q\) \(x\) \(a_1\) \(a ...
- Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))
C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Codeforces Round #372 (Div. 1) A. Plus and Square Root 数学题
A. Plus and Square Root 题目连接: http://codeforces.com/contest/715/problem/A Description ZS the Coder i ...
- Codeforces 715A. Plus and Square Root[数学构造]
A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Project Euler 80:Square root digital expansion 平方根数字展开
Square root digital expansion It is well known that if the square root of a natural number is not an ...
随机推荐
- 第二章 使用JavaScript
只要一提到把JavaScript放在网页中,就不得不涉及Web的核心语言-HTML.在当初开发JavaScript的时候,Netscape要解决的一个重要问题就是如何让JavaScript既能在HTM ...
- java_spring_bean的作用域_实例是否为单实例
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- dynamic_cast用法
dynamic_cast < type-id > ( expression ) 该运算符把expression转换成type-id类型的对象.Type-id必须是类的指针.类的引用或者vo ...
- unix 网路编程(卷一)第一个程序编译过程
unix卷一去年暑假买的到现在才开始看无比惭愧,而且惭愧第一个程序就断断续续弄了几天,要好好写程序了,马上要找工作了,下面介绍下把本书第一个程序跑起来的过程: 搜各种博客 我用系统的是ubuntu 1 ...
- Find security bugs学习笔记V1.0
Find security bugs学习笔记V1.0 http://www.docin.com/p-779309481.html
- [置顶] 运算符重载,浅拷贝(logical copy) ,vs, 深拷贝(physical copy),三大件(bigthree problem)
一般的我们喜欢这样对对象赋值: Person p1;Person p2=p1; classT object(another_object), or A a(b); classT object = ...
- nodejs 微信中使用file组件上传图片在某些机型上点击无反应
看下下面的代码: <form action="/" class="file_upload" method="post" enctype ...
- h2database源码浅析:事务、两阶段提交
Transaction Isolation Transaction isolation is provided for all data manipulation language (DML) sta ...
- Linux系统各发行版镜像下载(2)
Fedora ISO镜像下载: Fedora 是一个开放的.创新的.前瞻性的操作系统和平台,基于 Linux.它允许任何人自由地使用.修改和重发布,无论现在还是将来.它由一个强大的社群开发,这个社群的 ...
- 【Oracle&SQLServer】并集、交际、补集
1.并集(UNION/UNION ALL) Oracle&SQLServer中用法一致 UNION 去重 UNION ALL 不去重 -- 去重 select * from tablea un ...