Codeforces Gym 100114 H. Milestones 离线树状数组
H. Milestones
Time Limit: 1 Sec
Memory Limit: 256 MB
题目连接
http://codeforces.com/gym/100114
Description
The longest road of the Fairy Kingdom has n milestones. A long-established tradition defines a specific color for milestones in each region, with a total of m colors in the kingdom. There is a map describing all milestones and their colors. A number of painter teams are responsible for milestone maintenance and painting. Typically, each team is assigned a road section spanning from milestone #l to milestone #r. When optimizing the assignments, the supervisor often has to determine how many different colors it will take to paint all milestones in the section l…r. Example. Suppose there are five milestones #1, #2, #3, #4, #5 to be painted with colors 1, 2, 3, 2, 1, respectively. In this case, only two different paints are necessary for milestones 2…4: color 2 for milestones #2 and #4, and color 3 for milestone #3. Write a program that, given a map, will be able to handle multiple requests of the kind described above.
Input
Output
Sample Input
5 3 1 2 3 2 1 1 5 1 3 2 4
Sample Output
HINT
题意
求区间内有多少个不同的数
没有修改
题解:
离线维护树状数组就好了
代码:
#include <cstdio>
#include <cstdlib>
#include <sstream>
#include <iostream>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <string>
#include <utility>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std; typedef long long ll;
typedef pair<int,int> PII;
#define DEBUG(x) cout<< #x << ':' << x << endl
#define FOR(i,s,t) for(int i = (s);i <= (t);i++)
#define FORD(i,s,t) for(int i = (s);i >= (t);i--)
#define REP(i,n) for(int i=0;i<(n);i++)
#define REPD(i,n) for(int i=(n-1);i>=0;i--)
#define PII pair<int,int>
#define PB push_back
#define ft first
#define sd second
#define lowbit(x) (x&(-x))
#define INF (1<<30)
#define eps (1e-8) const int maxq = ;
const int maxn = ;
int a[maxn],C[maxn],last[];
int ans[maxq];
void init(){
memset(C,,sizeof(C));
memset(last,-,sizeof(last));
}
struct Query{
int l,r;
int idx;
bool operator < (const Query & rhs)const{
return r < rhs.r;
}
}Q[maxq]; void add(int x,int val){
while(x<maxn){
C[x] += val;
x += lowbit(x);
}
}
int sum(int x){
int res = ;
while(x > ){
res += C[x];
x -= lowbit(x);
}
return res;
}
int main(){
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
int n;
while(~scanf("%d",&n)){
init();
int q;
scanf("%d",&q);
FOR(i,,n)scanf("%d",&a[i]);
REP(i,q){
scanf("%d%d",&Q[i].l,&Q[i].r);
Q[i].idx = i;
}
sort(Q,Q+q);
int pre = ;
REP(i,q){
FOR(j,pre,Q[i].r){
if(last[a[j]]==-){
add(j,);
}else {
add(last[a[j]],-);
add(j,);
}
last[a[j]] = j;
}
ans[Q[i].idx] = sum(Q[i].r)-sum(Q[i].l-);
pre = Q[i].r+;
}
REP(i,q)printf("%d\n",ans[i]);
}
return ;
}
Codeforces Gym 100114 H. Milestones 离线树状数组的更多相关文章
- Codeforces Gym 100269F Flight Boarding Optimization 树状数组维护dp
Flight Boarding Optimization 题目连接: http://codeforces.com/gym/100269/attachments Description Peter is ...
- Educational Codeforces Round 10 D. Nested Segments 离线树状数组 离散化
D. Nested Segments 题目连接: http://www.codeforces.com/contest/652/problem/D Description You are given n ...
- Codeforces Round #365 (Div. 2) D - Mishka and Interesting sum(离线树状数组)
http://codeforces.com/contest/703/problem/D 题意: 给出一行数,有m次查询,每次查询输出区间内出现次数为偶数次的数字的异或和. 思路: 这儿利用一下异或和的 ...
- CodeForces - 220B Little Elephant and Array (莫队+离散化 / 离线树状数组)
题意:N个数,M个查询,求[Li,Ri]区间内出现次数等于其数值大小的数的个数. 分析:用莫队处理离线问题是一种解决方案.但ai的范围可达到1e9,所以需要离散化预处理.每次区间向外扩的更新的过程中, ...
- CF #365 (Div. 2) D - Mishka and Interesting sum 离线树状数组
题目链接:CF #365 (Div. 2) D - Mishka and Interesting sum 题意:给出n个数和m个询问,(1 ≤ n, m ≤ 1 000 000) ,问在每个区间里所有 ...
- CF #365 (Div. 2) D - Mishka and Interesting sum 离线树状数组(转)
转载自:http://www.cnblogs.com/icode-girl/p/5744409.html 题目链接:CF #365 (Div. 2) D - Mishka and Interestin ...
- 离线树状数组 hihocoder 1391 Countries
官方题解: // 离线树状数组 hihocoder 1391 Countries #include <iostream> #include <cstdio> #include ...
- 区间的关系的计数 HDU 4638 离线+树状数组
题目大意:给你n个人,每个人都有一个id,有m个询问,每次询问一个区间[l,r],问该区间内部有多少的id是连续的(单独的也算是一个) 思路:做了那么多离线+树状数组的题目,感觉这种东西就是一个模板了 ...
- BZOJ_2743_[HEOI2012]采花_离线+树状数组
BZOJ_2743_[HEOI2012]采花_离线+树状数组 Description 萧芸斓是Z国的公主,平时的一大爱好是采花.今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花 .花园足够大 ...
随机推荐
- 【大数取模】HDOJ-1134、CODEUP-1086
1086: 大数取模 题目描述 现给你两个正整数A和B,请你计算A mod B.为了使问题简单,保证B小于100000. 输入 输入包含多组测试数据.每行输入包含两个正整数A和B.A的长度不超过1 ...
- Zend Framework 入门(2)—多国语言支持
如果你的项目想要支持多语言版本,那么就需要用到 Zend_Translate.Zend_Translate 的详细文档在这里,不过如果想偷懒的话,也很简单,在View Helpers 文档中介绍了如何 ...
- C#发送Email邮件(实例:QQ邮箱和Gmail邮箱)
下面用到的邮件账号和密码都不是真实的,需要测试就换成自己的邮件账号. 需要引用: using System.Net.Mail; using System.Text; using System.Net; ...
- Long Dominoes(ZOJ 2563状压dp)
题意:n*m方格用1*3的方格填充(不能重叠)求有多少种填充方法 分析:先想状态,但想来想去就是觉得不能覆盖所有情况,隔了一天,看看题解,原来要用三进制 0 表示横着放或竖放的最后一行,1表示竖放的中 ...
- Selenium2Library系列 keywords 之 _SelectElementKeywords 之 page_should_contain_list(self, locator, message='', loglevel='INFO')
def page_should_contain_list(self, locator, message='', loglevel='INFO'): """Verifies ...
- maven学习系列教程,第一课(web项目的搭建)
1.现在一般eclipse都已经装好了maven板块,无需自行下载安装,所以我们的第一步就是新建一个maven project 2地址使用默认的就行 3这边筛选一下,选择webapp 4. 5.建好后 ...
- codevs1796-最小完全图
表示第一篇就是水题. 根据Prim的思想,我们可以证明:dis ( a , b ) > max { a b 最小生成树路径上的边权 } 把所有边sort一遍用并查集维护就可以了 #include ...
- 关于c3p0配置详细说明
<!-- c3p0连接池配置 --> <property name="driverClass" value="${c3p0.driverClass}&q ...
- Tkinter教程之Listbox篇
本文转载自:http://blog.csdn.net/jcodeer/article/details/1811310 #Tkinter教程之Listbox篇#Listbox为列表框控件,它可以包含一个 ...
- leetcode—Valid Parentheses
1.问题描述 Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if t ...