Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】

 

【样例输入2】

 

Sample Output

【样例输出1】


【样例输出2】


对于100%的数据:1 ≤ n, m ≤ 100,000。

 

Solution

先证明一下,假设有一个点(x,y),那么该点到原点连线上点的数量为gcd(x,y)-1

设gcd(x,y)=t,则x=at,y=bt

那么离原点最近且在连线上的点为(a,b)

因此,连线上所有点一次为(a,b),(2a,2b),(3a,3b)...

去掉点(x,y)共有t-1个这样的整数点对

那么答案转化为求∑(1<=i<=n)∑(1<=j<=m)gcd(i,j)

可以用欧拉函数,预处理+递推

popoqqq的题解:

考虑容斥原理+递推

设g(x)=公因数为x的点对(i,j)的个数,f(x)=最大公因数为x的点对(i,j)的个数

因此g(x)=n/x * m/x,f(x)=g(x)-∑(i*x<=min(n,m))f(i*x)

所以倒着递推一遍就行了

#include <stdio.h>
int n,m,i,j,mn;long long f[100010],ans;
int main(){
for(scanf("%d%d",&n,&m),mn=i=n<m?n:m;i;ans+=f[i]*(i+i-1),i--)
for(f[i]=(long long)(n/i)*(m/i),j=2;i*j<=mn;f[i]-=f[i*j],j++);
printf("%lld\n",ans);
return 0;
}

orz n+e

[bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)的更多相关文章

  1. [BZOJ2005][Noi2010]能量采集 容斥+数论

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4394  Solved: 2624[Submit][Statu ...

  2. hdu2588 GCD 给定n,m。求x属于[1,n]。有多少个x满足gcd(x,n)>=m; 容斥或者欧拉函数

    GCD Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepted Sub ...

  3. 【hdu-2588】GCD(容斥定理+欧拉函数+GCD()原理)

    GCD Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submissio ...

  4. BZOJ 2005: [Noi2010]能量采集(容斥+数论)

    传送门 解题思路 首先题目要求的其实就是\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m [(gcd(i,j)-1)*2+1)]\),然后变形可得\(-n*m+2\s ...

  5. Luogu P1447 [NOI2010]能量采集 数论??欧拉

    刚学的欧拉反演(在最后)就用上了,挺好$qwq$ 题意:求$\sum_{i=1}^{N}\sum_{j=1}^{M}(2*gcd(i,j)-1)$ 原式 $=2*\sum_{i=1}^{N}\sum_ ...

  6. 洛谷 1447 [NOI2010]能量采集——容斥/推式子

    题目:https://www.luogu.org/problemnew/show/P1447 1.容斥原理 求 f [ i ] 表示 gcd==i 的对数,先 f [ i ] = (n/i) * (m ...

  7. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

  8. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  9. BZOJ2005: [Noi2010]能量采集(欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

随机推荐

  1. Luogu P1186 玛丽卡 【最短路】By cellur925

    题目描述 麦克找了个新女朋友,玛丽卡对他非常恼火并伺机报复. 因为她和他们不住在同一个城市,因此她开始准备她的长途旅行. 在这个国家中每两个城市之间最多只有一条路相通,并且我们知道从一个城市到另一个城 ...

  2. 【react native】rn踩坑实践——从输入框“们”开始

    因为团队技术栈变更为react native,所以开始写起了rn的代码,虽然rn与react份数同源,但是由于有很多native有关的交互和变动,实际使用还是碰到蛮多问题的,于是便有了这个系列,本来第 ...

  3. A - Add More Zero

    Bryce1010模板 #include <bits/stdc++.h> using namespace std; #define LL long long int main() { in ...

  4. js中判断数据类型的方法 typeof

    <input type="text" onblur="demo(this)"/><br/> <input type="n ...

  5. YUM报错及解决办法

    [root@xuegod60 ~]# yum clean all Loaded plugins: product-id, refresh-packagekit, security, subscript ...

  6. mysql 中 时间函数 now() current_timestamp() 和 sysdate() 比较

    转载请注明出处 https://www.cnblogs.com/majianming/p/9647786.html 在mysql中有三个时间函数用来获取当前的时间,分别是now().current_t ...

  7. 用C#操作word替换字符,用spire

    这两天想写个小程序,是用C#操作word文档的.许多人都对微软本身的解决方案COM组件十分不看好,比如需要本机安装office等等,总之吐槽很多,直接放弃. 搜到一个国产的npoi库,据说操作简单功能 ...

  8. Sqlmap脱库之“你的数据我所见”

    废话不多说,介绍和理论啥的网上一搜一大把,一次只为tuoku. 实战操作: 1.在网上找个index.php?id=1的站点 2.很明显看到了脱下裤子的希望,sqlmap走一把.查看数据库 3.怎么看 ...

  9. 锐动SDK应用于行车记录仪

    方案架构 手机端直播与录播功能忠实记录旅途中各种突发事件,还原事实真相,与家人和朋友分享沿途美景,一同感受美妙之旅. 强大的视频编辑功能,像编辑图片一样给视频添加各种滤镜,配音,配乐,标题文字等特效. ...

  10. iOS----轻松掌握AFN网络顶级框架

    AFN 一.什么是AFN 全称是AFNetworking,是对NSURLConnection的一层封装 虽然运行效率没有ASI高,但是使用比ASI简单 在iOS开发中,使用比较广泛 AFN的githu ...