String painter

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3935    Accepted Submission(s): 1833

Problem Description
There are two strings A and B with equal length. Both strings are made up of lower case letters. Now you have a powerful string painter. With the help of the painter, you can change a segment of characters of a string to any other character you want. That is, after using the painter, the segment is made up of only one kind of character. Now your task is to change A to B using string painter. What’s the minimum number of operations?
 
Input
Input contains multiple cases. Each case consists of two lines:
The first line contains string A.
The second line contains string B.
The length of both strings will not be greater than 100.
 
Output
A single line contains one integer representing the answer.
 
Sample Input
zzzzzfzzzzz
abcdefedcba
abababababab
cdcdcdcdcdcd
 
Sample Output
6
7
 
2017.3.18复习,感觉这道题的dp设计很巧妙,还是没有吃透。。。

 
题意:给定两个等长字符串A、B,一次操作可以将A的任意一段连续的字符变为同一任意字符,问最少多少次操作可以将A变为B。
 
专门挑的区间dp的题,但是然并卵。。。没思路啊。。。看题解。。。
 
思路:dp[i][j]:将空串变为B[i-->j]所需要的最少次数。先求出所有dp[i][j],即求出将空串变为B[i-->j]所需最少次数。那么根据dp数组求出最终答案就很容易:
1.ans[k]=dp[1][k]
 
2.if(A[k]==B[k])   ans[k]=ans[k-1];     (ans[0]==0)
 else  ans[k]=min(ans[k],ans[t]+ans[t+1][k]);  (1=<t<k)
 
求dp[i][j]:
枚举起点i、终点j、遍历[i+1,j]区间k

for(int j=1;j<=len;j++) //end
{
  for(int i=j;i>0;i--) //begin
  {
    dp[i][j]=dp[i+1][j]+1;
    for(int k=i+1;k<=j;k++)
      if(B[i]==B[k])
        dp[i][j]=min(dp[i][j],dp[i][k-1]+dp[k+1][j]);
   }
}

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std; char A[],B[];
int dp[][];
int ans[]; int main()
{
while(scanf("%s%s",A+,B+)!=EOF)
{
memset(dp,,sizeof(dp));
memset(ans,,sizeof(ans));
int len=strlen(B+);
for(int j=;j<=len;j++) //end
{
for(int i=j;i>;i--) //begin
{
dp[i][j]=dp[i+][j]+;
for(int k=i+;k<=j;k++) //一定是从左往右找重的
if(B[i]==B[k])
dp[i][j]=min(dp[i][j],dp[i][k-]+dp[k+][j]);
}
}
for(int i=;i<=len;i++)
{
ans[i]=dp[][i];
if(A[i]==B[i])
ans[i]=ans[i-];
else
{
for(int j=;j<i;j++)
ans[i]=min(ans[i],ans[j]+dp[j+][i]);
}
}
printf("%d\n",ans[len]);
}
return ;
}

HDU_2476_String painter_(区间dp)的更多相关文章

  1. hdu_2476_String painter(区间DP)

    题目链接:hdu_2476_String painter 题意: 有a,b两字符串,现在你有一个刷子,每次可以任选一个区间,使这个区间变成你想要的字符,现在让你将a变成b,问最少刷多少次 题解: 考虑 ...

  2. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  3. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  4. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  5. BZOJ1055: [HAOI2008]玩具取名[区间DP]

    1055: [HAOI2008]玩具取名 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1588  Solved: 925[Submit][Statu ...

  6. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

  7. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  8. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

  9. 区间dp总结篇

    前言:这两天没有写什么题目,把前两周做的有些意思的背包题和最长递增.公共子序列写了个总结.反过去写总结,总能让自己有一番收获......就区间dp来说,一开始我完全不明白它是怎么应用的,甚至于看解题报 ...

随机推荐

  1. 在head里的CSS link 竟然粗如今body里了?

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGVhY2Vfb2Zfc291bA==/font/5a6L5L2T/fontsize/400/fill/I0 ...

  2. iOS开发——高级篇——iOS 项目的目录结构

    最近闲来无事去面试一下iOS开发,让我感到吃惊的,面试官竟然问怎么分目录结构,还具体问每个子目录的文件名. 目录结构确实非常重要,面试官这么问,无疑是想窥探开发经验.清晰的目录结构,可让人一眼明白相应 ...

  3. 修改数据表的字符集为utf8mb4

    修改数据表的字符集为utf8mb4

  4. ASP.NET和C#的区别/

    1..NET是一个平台,一个抽象的平台的概念. .NET平台其本身实现的方式其实还是库,抽象层面上来看是一个平台. 个人理解.NET核心就只是.NET Framework. .NET Framewor ...

  5. 【POJ 1804】 Brainman

    [题目链接] 点击打开链接 [算法] 本题是一个很经典的问题 : 归并排序求逆序对数,可以用分治算法解决 分治,分而治之,分治算法的思想就是将一个问题转化为若干个子问题,对这些子问题分别求解,最后, ...

  6. WPF获取原始控件样式

    要获取WPF控件的原始样式,需要我们安装Blend for Visual Studio. 然后,我们打开Blend for Visual Studio,创建一个WPF项目. 然后,我们向页面拖动一个B ...

  7. mysql通用分页存储过程遇到的问题(转载)

    mysql通用分页存储过程遇到的问题(转载) http://www.cnblogs.com/daoxuebao/archive/2015/02/09/4281980.html

  8. POJ 1659 Frogs' Neighborhood (贪心)

    题意:中文题. 析:贪心策略,先让邻居多的选,选的时候也尽量选邻居多的. 代码如下: #pragma comment(linker, "/STACK:1024000000,102400000 ...

  9. 一个简陋的个人小项目,也是个人第一个真正意义上的独立项目——Graph

    由来 我最早接触到图这个概念是在大二的离散数学当中图论相关的内容,当时是以著名的哥尼斯堡七桥问题引出图论的概念,现在依然记忆犹新(不过只是记得这个名字,具体的解题思路我重新温习了一下才想起来),当时也 ...

  10. [C陷阱和缺陷] 第1章 词法“陷阱”

    有感自己的C语言在有些地方存在误区,所以重新仔细把"C陷阱和缺陷"翻出来看看,并写下这篇博客,用于读书总结以及日后方便自身复习. 第1章 词法"陷阱" 1.1 ...