首先根据lucas,

\[C_n^m\%2=C_{n\%2}^{m\%2}*C_{n/2}^{m/2}
\]

让这个式子的结果为计数的情况只有n&m==m,因为m的每一个为1的二进制位都需要n中这一位为1,否则结果就是0

所以枚举子集,设f[i]为以i开头的合法子序列个数,dp的时候枚举子集从后往前dp即可

#include<iostream>
#include<cstdio>
using namespace std;
const int N=300005,mod=1e9+7;
int n,a[N],p[N],f[N],ans;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void jia(int &x,int y)
{
x+=y;
x>=mod?x-=mod:0;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
{
a[i]=read();
p[a[i]]=i;
}
for(int i=1;i<=233333;i++)
if(p[i])
{
for(int j=i;j;j=(j-1)&i)
if(p[j]>p[i])
jia(f[i],f[j]);
jia(ans,f[i]++);
}
printf("%d\n",ans);
return 0;
}

bzoj 4903: [Ctsc2017]吉夫特【lucas+状压dp】的更多相关文章

  1. 【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp

    题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2 ...

  2. BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)

    题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...

  3. [BZOJ 1072] [SCOI2007] 排列perm 【状压DP】

    题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <io ...

  4. BZOJ 3195 [Jxoi2012]奇怪的道路 | 状压DP

    传送门 BZOJ 3195 题解 这是一道画风正常的状压DP题. 可以想到,\(dp[i][j][k]\)表示到第\(i\)个点.已经连了\(j\)条边,当前\([i - K, i]\)区间内的点的度 ...

  5. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  6. BZOJ 3446: [Usaco2014 Feb]Cow Decathlon( 状压dp )

    水状压dp. dp(x, s) = max{ dp( x - 1, s - {h} ) } + 奖励(假如拿到的) (h∈s). 时间复杂度O(n * 2^n) ------------------- ...

  7. BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...

  8. BZOJ.4160.[NEERC2009]Exclusive Access 2(状压DP Dilworth定理)

    BZOJ DAG中,根据\(Dilworth\)定理,有 \(最长反链=最小链覆盖\),也有 \(最长链=最小反链划分数-1\)(这个是指最短的最长链?并不是很确定=-=),即把所有点划分成最少的集合 ...

  9. BZOJ 4197 NOI 2015 寿司晚宴 状压DP

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status] ...

  10. BZOJ 1879 [Sdoi2009]Bill的挑战 ——状压DP

    本来打算好好写写SDOI的DP题目,但是忒难了, 太难了,就写的这三道题仿佛是可做的. 生在弱省真是兴奋. 这题目直接状压,f[i][j]表示匹配到i,状态集合为j的方案数,然后递推即可. #incl ...

随机推荐

  1. 进程监控模块配置与使用 ------ACE(开源项目)

    下面我先从此工程的作用讲起: 此工程适用于程序异常退出,然后自动重启该程序.对于,系统重启不了该进程,那此程序将返回-1,也无法进行下一步工作. 下面,先从配置开始讲起: 参考资料:http://hi ...

  2. 增强版的RecycleViewAdapter,能够直接使用

    在Android的项目中.须要大量的列表组件来显示数据.在之前的项目中一直使用的是ListView 组件,可是在最新的V7包中出现了能后替代ListView的组件RecycleView. 所以在新的项 ...

  3. VirtualBox中使用双网卡实现CentOS既能上网(校园网)也能使用SSHclient

    近期在虚拟机中使用linux操作系统,之前使用NAT方式上网,能够畅通无阻.可是使用SSHclient连接linux虚拟机就必须为其指定固定的IP地址.依照网上的配置方法使用桥接方式,这种方式是能够的 ...

  4. HDOJ 5091 Beam Cannon 扫描线

    线段树+扫描线: 我们用矩形的中心点来描写叙述这个矩形,然后对于每一个敌舰,我们建立一个矩形中心的活动范围,即矩形中心在该范围内活动就能够覆盖到该敌舰.那么我们要求的问题就变成了:随意一个区域(肯定也 ...

  5. java设计模式----真实世界的模式

    设计模式的定义: 模式是在某情境下,针对某问题的某种解决方案 反模式: 告诉你如何采用一个不好的解决方案解决一个问题 要点: 1.让设计模式自然而然地出现在你的设计中,而不是为了使用而使用 2.设计模 ...

  6. openwrt gstreamer实例学习笔记(二.gstreamer 的 Element)

    对程序员来说,GStreamer 中最重要的一个概念就是 GstElement 对象.该对象是构建一个媒体管道的基本块.所有上层(high-level)部件都源自GstElement对象.任何一个解码 ...

  7. LeetCode题解(13)--Roman to Integer

    https://leetcode.com/problems/roman-to-integer/ 原题: Given a roman numeral, convert it to an integer. ...

  8. sanic官方文档解析之Example(一)

    1,示例 这部的文档是简单的示例集合,它能够帮助你快速的启动应用大部分的应用,这些应用大多事分类的,并且提供给ini工作的连接代码: 1.1,基础示例 这部分示例集成了提供简单sanic简单的代码 单 ...

  9. 关于UISearchBar

    iPhone开发之UISearchBar学习是本文要学习的内容,主要介绍了UISearchBar的使用,不多说,我们先来看详细内容.关于UISearchBar的一些问题. 1.修改UISearchBa ...

  10. bootstrap中的less

    一.如何加入变量 引入你的 .less 样式文件的时候要设置 rel 属性值为 “stylesheet/less”: 参考网站:http://www.bootcss.com/p/lesscss/  1 ...