Description

Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measure a dose of medicine. For example, to measure 200mg of aspirin using 300mg weights and 700mg weights, she can put one 700mg weight on the side of the medicine and three 300mg weights on the opposite side (Figure 1). Although she could put four 300mg weights on the medicine side and two 700mg weights on the other (Figure 2), she would not choose this solution because it is less convenient to use more weights. 
You are asked to help her by calculating how many weights are required. 

Input

The input is a sequence of datasets. A dataset is a line containing three positive integers a, b, and d separated by a space. The following relations hold: a != b, a <= 10000, b <= 10000, and d <= 50000. You may assume that it is possible to measure d mg using a combination of a mg and b mg weights. In other words, you need not consider "no solution" cases. 
The end of the input is indicated by a line containing three zeros separated by a space. It is not a dataset.

Output

The output should be composed of lines, each corresponding to an input dataset (a, b, d). An output line should contain two nonnegative integers x and y separated by a space. They should satisfy the following three conditions.

  • You can measure dmg using x many amg weights and y many bmg weights.
  • The total number of weights (x + y) is the smallest among those pairs of nonnegative integers satisfying the previous condition.
  • The total mass of weights (ax + by) is the smallest among those pairs of nonnegative integers satisfying the previous two conditions.

No extra characters (e.g. extra spaces) should appear in the output.

Sample Input

700 300 200
500 200 300
500 200 500
275 110 330
275 110 385
648 375 4002
3 1 10000
0 0 0

Sample Output

1 3
1 1
1 0
0 3
1 1
49 74
3333 1
#include<cstdio>
#include<set>
#include<map>
#include<cstring>
#include<algorithm>
#include<queue>
#include<iostream>
#include<string>
#include<cmath>
#include<vector>
using namespace std;
typedef long long LL;
/*
a*x = b*y + d
a*x + b*y = d
|x|+|y| 的最小值
|x|+|y|==|x0+b/d*t|+|y0-a/d*t|,我们规定 a>b(如果 a<b,我们便交换 a b),从这个式子中,
我们可以轻易的发现:|x0+b/d*t|是单调递增的,|y0-a/d*t|是单调递减的,而由于我们规定了 a>b,
那么减的斜率边要大于增的斜率,于是整个函数减少的要比增加的快,但是由于绝对值的符号的作用,
最终函数还是递增的。
也就是说,函数是凹的,先减小,再增大。那么什么时候最小呢?很显然是 y0-a/d*t==0 的时候,
于是我们的最小值|x|+|y|也一定是在 t=y0*d/a附近了,只要在附近枚举几个值就能找到最优解了。
*/
typedef long long LL;
#define INF 0x3f3f3f3f
LL ex_gcd(LL a,LL b,LL &x,LL &y)
{
if(b==)
{
x = ;
y = ;
return a;
}
LL ans = ex_gcd(b,a%b,x,y);
LL tmp = x;
x = y;
y = tmp - a/b*x;
return ans;
}
void cal(LL a,LL b,LL c)//求ax+by==c 的一组|x|+|y| 最小的解
{
bool f = false;
if(a<b)
{
f = true;
swap(a,b);
}
LL x=,y=;
LL gcd = ex_gcd(a,b,x,y);
x *= c/gcd;
y *= c/gcd;
LL t = y*gcd/a,ans=INF;
LL kx,ky;
for(LL i=t-;i<=t+;i++)
{
LL t1 = x + (b/gcd)*i;
LL t2 = y - (a/gcd)*i;
if( abs((long)t1)+abs((long)t2)<ans)
{
ans = abs((long)t1)+abs((long)t2);
kx = (t1>)?t1:-t1;
ky = (t2>)?t2:-t2;
}
}
if(!f)
printf("%lld %lld\n",kx,ky);
else
printf("%lld %lld\n",ky,kx);
}
int main()
{
LL a,b,c;
while(scanf("%lld%lld%lld",&a,&b,&c),a+b+c)
{
cal(a,b,c);
}
}

The Balance POJ 2142 扩展欧几里得的更多相关文章

  1. poj 2142 扩展欧几里得解ax+by=c

    原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...

  2. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

  3. poj 1061 扩展欧几里得解同余方程(求最小非负整数解)

    题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...

  4. poj 1061(扩展欧几里得定理求不定方程)

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特 ...

  5. poj 2115 扩展欧几里得

    题目链接:http://poj.org/problem?id=2115 题意: 给出一段循环程序,循环体变量初始值为 a,结束不等于 b ,步长为 c,看要循环多少次,其中运算限制在 k位:死循环输出 ...

  6. poj 2142 拓展欧几里得

    #include <cstdio> #include <algorithm> #include <cstring> #include <iostream> ...

  7. POJ 1061 扩展欧几里得

    #include<stdio.h> #include<string.h> typedef long long ll; void gcd(ll a,ll b,ll& d, ...

  8. 扩展欧几里得(E - The Balance POJ - 2142 )

    题目链接:https://cn.vjudge.net/contest/276376#problem/E 题目大意:给你n,m,k,n,m代表当前由于无限个质量为n,m的砝码.然后当前有一个秤,你可以通 ...

  9. POJ - 2142 The Balance(扩展欧几里得求解不定方程)

    d.用2种砝码,质量分别为a和b,称出质量为d的物品.求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小). s.扩展欧几里得求解不定方程. 设ax+by=d. 题意说不定方程一定有 ...

随机推荐

  1. 思维题 UVA 10881 Piotr's Ants

    题目传送门 /* 题意:在坐标轴上一群蚂蚁向左或向右爬,问经过ts后,蚂蚁的位置和状态 思维题:本题的关键1:蚂蚁相撞看作是对穿过去,那么只要判断谁是谁就可以了 关键2:蚂蚁的相对位置不变 关键3:o ...

  2. Linux下磁盘分区、挂载、卸载操作记录

    Linux下磁盘分区.挂载.卸载操作记录. 操作环境:CentOS release 6.5 (Final) Last :: from 118.230.194.76 [root@CentOS ~]# [ ...

  3. C# 传值和传引用 ( ref out in )

    引用类型的变量不直接包含其数据:它包含的是对其数据的引用.当通过值传递引用类型的参数时,有可能更改引用所指向的数据,如某类成员的值(更改属性的值),但是无法更改引用本身的值:也就是说,不能使用相同的引 ...

  4. responsive-navigator

    html 代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> < ...

  5. Python多线程爬图&Scrapy框架爬图

    一.背景 对于日常Python爬虫由于效率问题,本次测试使用多线程和Scrapy框架来实现抓取斗图啦表情.由于IO操作不使用CPU,对于IO密集(磁盘IO/网络IO/人机交互IO)型适合用多线程,对于 ...

  6. JS高级——文件操作

    https://www.cnblogs.com/mingmingruyuedlut/archive/2011/10/12/2208589.html https://blog.csdn.net/pl16 ...

  7. x86汇编之十(使用字符串)

    x86汇编之十(使用字符串) 转自网络,出处不详 一.传送字符串 Intel提供了完整的字符串传送指令,就像是MOV指令一样. 1.MOVS指令 1)movs指令格式 把字符串从一个位内存位置传送到另 ...

  8. HDU_1176_免费馅饼

    http://acm.hdu.edu.cn/showproblem.php?pid=1176 参考自:http://blog.csdn.net/xcszbdnl/article/details/787 ...

  9. 如何在mybatis中引用java中的常量和方法

    转自:http://www.68idc.cn/help/jiabenmake/qita/20140821125261.html 在mybatis的映射xml文件调用java类的方法: 1. SELEC ...

  10. Mybatis学习总结二

    Mapper动态代理开发方式 实现原理: Mapper接口开发方法只需要程序员编写Mapper接口(相当于Dao接口),由Mybatis框架根据接口定义创建接口的动态代理对象. Mapper接口开发需 ...