要求$ans=\sum_{i=1}^n \sum_{j=1}^m (n-i)(m-j)(gcd(i,j)-1)$

可以看做枚举矩阵的大小,然后左下右上必须取的方案数。

这是斜率单增的情况

然后大力反演即可。

最后$ans=ans*2+C(n,3)*m+C(m,3)*n$

$\Theta (n \log n)$

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define md 1000000007
#define inf 0x3f3f3f3f
#define maxn 50005 ll vis[maxn],mu[maxn],pr[maxn],top; void init1()
{
mu[1]=1;
F(i,2,maxn)
{
if (!vis[i])
{
mu[i]=-1;
pr[++top]=i;
}
F(j,1,top)
{
if ((ll)i*pr[j]>=maxn) break;
vis[i*pr[j]]=1;
if (i%pr[j]==0) {mu[i*pr[j]]=0;break;}
mu[i*pr[j]]=-mu[i];
}
}
} ll f1[maxn],f2[maxn],f3[maxn],ans=0; ll Sum(ll n)
{
n=(((n+1)*n)>>1)%md;
return n;
} void solve(ll n,ll m)
{
if (n>m) swap(n,m);
ll ret=0;
F(d,1,n)
{
ll tmp=0;
F(p,1,n/d)
{
tmp+=mu[p]*(n/p/d)*(m/p/d)*m*n; tmp%=md;
tmp+=mu[p]*d*d*p*p*Sum(n/p/d)*Sum(m/p/d); tmp%=md;
tmp-=mu[p]*m*d*p*(m/p/d)*Sum(n/p/d); tmp%=md;
tmp-=mu[p]*n*d*p*(n/p/d)*Sum(m/p/d); tmp%=md;
}
ret+=tmp*(d-1);
}
ans=(2*ret)%md;
} ll n,m; ll C(ll n)
{
n%=md;
return (n*(n-1)*(n-2)/6)%md;
}
int main()
{
init1();//init2();
scanf("%lld%lld",&n,&m);
solve(n,m);
printf("%lld\n",(ans+(n*C(m))%md+(m*C(n))%md)%md);
}

  

BZOJ 3518 点组计数 ——莫比乌斯反演的更多相关文章

  1. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  2. BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1067  Solved: 494[Submit][Status][Disc ...

  3. 【51nod】1222 最小公倍数计数 莫比乌斯反演+组合计数

    [题意]给定a和b,求满足a<=lcm(x,y)<=b && x<y的数对(x,y)个数.a,b<=10^11. [算法]莫比乌斯反演+组合计数 [题解]★具体 ...

  4. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  5. BZOJ 1114 Number theory(莫比乌斯反演+预处理)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=71738 题意:给你一个整数序列a1, a2, a3, ... , ...

  6. BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...

  7. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  8. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  9. UOJ #54 时空穿梭 —— 计数+莫比乌斯反演+多项式系数

    题目:http://uoj.ac/problem/54 10分还要用 Lucas 定理囧...因为模数太小了不能直接算... #include<cstdio> #include<cs ...

随机推荐

  1. CodeForces 149D Coloring Brackets (区间DP)

    题意: 给一个合法的括号序列,仅含()这两种.现在要为每对括号中的其中一个括号上色,有两种可选:蓝or红.要求不能有两个同颜色的括号相邻,问有多少种染色的方法? 思路: 这题的模拟成分比较多吧?两种颜 ...

  2. 如何解决源码安装软件中make时一直重复打印configure信息

    在通过源码安装软件时,会出现执行./configure后再make时总是重复打印configure的信息,无法进入下一阶段的安装. 主要原因是系统当前的时间与实际时间不一致,特别是在虚拟机上经常会出现 ...

  3. Entity Framework插入数据报错:Validation failed for one or more entities

    www.111cn.net 编辑:lanve 来源:转载 今天在处理Entity Framework插入数据库时,报错: Validation failed for one or more entit ...

  4. UESTC cdoj 619 吴神,人类的希望 (组合数学)

    枚举盒子的个数,先把总数n减去掉box*k保证每个盒子至少有k个小球,剩下的小球放入盒子中可以为空, 加入box个小球保证每个盒子至少有一个小球,问题转化成不可区分小球放入不可区分盒子非空的方案数. ...

  5. Scalatra

    SBT和giter8 在你开始着手之前,你需要安装两个工具(我假设你已经安装了JDK1.6+).我将给你提供简缩的安装指令,详细版的安装指令可通过 下面的scalatra页面找到( http://ww ...

  6. 如何在Ubuntu 16.04上安装Apache Web服务器

    转载自:https://www.howtoing.com/how-to-install-the-apache-web-server-on-ubuntu-16-04 介绍 Apache HTTP服务器是 ...

  7. DS博客作业08--课程总结

    DS博客作业08--课程总结 1.当初你是如何做出选择计算机专业的决定的? 1.1 经过一年学习,你的看法改变了么,为什么? 1.2 你觉得计算机是你喜欢的领域吗,它是你擅长的领域吗? 为什么? 1. ...

  8. apache shiro的工作流程分析

    本文基于shiro的web环境,用宏观(也就是不精确)的角度去理解shiro的工作流程,先看shiro官方的一张图. 和应用程序直接交互的对象是Subject,securitymanager为Subj ...

  9. python已安装好第三方库,pycharm import时仍标红的解决办法

    pip install pymysql之后导入import pymysql时候标红 发现 pymysql下方还是标红,不能正常导入 可以试用一下以下的办法 解决办法: 首先打开 Settings找到P ...

  10. $Codeforces\; Round\; 504\; (Div.2)$

    宾馆的\(\rm{wifi}\)也太不好了,蹭的\(ZZC\)的热点才打的比赛(感谢\(ZZC\)) 日常掉rating-- 我现在是个\(\color{green}{pupil}\)-- 因为我菜, ...