[IOI2005]Riv 河流
https://www.zybuluo.com/ysner/note/1300088
题面
有一棵\(n\)个点的树,现在在上面放\(k\)个标记,使得每个点的权值乘上自己到最近的标记祖先的距离的和最小。
- \(n\leq100,k\leq50\)
解析
神仙题。
神仙之处在于只能向祖先转移。
状态中要有表示自己最近标记祖先的距离的量。
再加上要有表示标记数的量。
因此状态也就呼之欲出了,设\(f[i][j][k]\)表示\(i\)号点,自己的最近标记祖先为\(j\),子树中有\(k\)个标记的答案。
默认\(f\)数组表示当前点不打标记,\(g\)数组表示当前点打标记。
那么这样就可以转移了。
- 合并子节点与当前结点中最近标记祖先相同的状态。(\(0\)标记的继承到所有标记数状态中)
- 枚举子节点状态数,最小化当前结点最近标记祖先的状态。
- \(f\)数组加上代价。
自己完全想不出系列。
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int N=105;
int n,K,d[N],h[N],cnt,s[N],sta[N],top,f[N][N][55],g[N][N][55];
struct Edge{int to,nxt,w;}e[N];
il void add(re int u,re int v,re int w){e[++cnt]=(Edge){v,h[u],w};h[u]=cnt;}
il int gi()
{
re int x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il int min(re int x,re int y){return x<y?x:y;}
il void dfs(re int u)
{
sta[++top]=u;
for(re int i=h[u];i+1;i=e[i].nxt)
{
re int v=e[i].to;
d[v]=d[u]+e[i].w;
dfs(v);
fp(j,1,top)
fq(k,K,0)
{
f[u][sta[j]][k]+=f[v][sta[j]][0];
g[u][sta[j]][k]+=f[v][u][0];
fq(x,k,0)
{
f[u][sta[j]][k]=min(f[u][sta[j]][k],f[u][sta[j]][k-x]+f[v][sta[j]][x]);
g[u][sta[j]][k]=min(g[u][sta[j]][k],g[u][sta[j]][k-x]+f[v][u][x]);
}
}
}
fp(j,1,top)
fq(k,K,0)
if(k) f[u][sta[j]][k]=min(g[u][sta[j]][k-1],f[u][sta[j]][k]+s[u]*(d[u]-d[sta[j]]));
else f[u][sta[j]][k]+=s[u]*(d[u]-d[sta[j]]);
--top;
}
int main()
{
memset(h,-1,sizeof(h));
n=gi();K=gi();
fp(i,1,n)
{
s[i]=gi();re int u=gi(),w=gi();
add(u,i,w);
}
dfs(0);
printf("%d\n",f[0][0][K]);
return 0;
}
[IOI2005]Riv 河流的更多相关文章
- [LUOGU] P3354 [IOI2005]Riv 河流
题目描述 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄--名叫 ...
- BZOJ.1812.[IOI2005]Riv 河流(树形背包)
BZOJ 洛谷 这个数据范围..考虑暴力一些把各种信息都记下来.不妨直接令\(f[i][j][k][0/1]\)表示当前为点\(i\),离\(i\)最近的建了伐木场的\(i\)的祖先为\(j\),\( ...
- P3354 [IOI2005]Riv 河流
树形dp,设f[i][j][k]表示第i个点的子树中选择j个点作为伐木场,而且k是建了伐木场的最浅的i的祖先的情况下,最小的收益. 这种题还要练一下,咕咕 然后转移可以n4方做. // luogu-j ...
- 【[IOI2005]Riv 河流】
趁魏佬去英语演讲了,赶快%%%%%%%%%%%%%%魏佬 基本上是照着魏佬的代码写的 这其实还是一个树上背包 我们用\(dp[i][j][k]\)表示在以\(i\)为根的子树里,我们修建\(k\)个伐 ...
- 洛谷P3354 [IOI2005]Riv 河流——“承诺”DP
题目:https://www.luogu.org/problemnew/show/P3354 状态中要记录一个“承诺”,只需相同承诺之间相互转移即可: 然后就是树形DP的套路了. 代码如下: #inc ...
- bzoj1812 [IOI2005]riv河流
题目链接 problem 给出一棵树,每个点有点权,每条边有边权.0号点为根,每个点的代价是这个点的点权\(\times\)该点到根路径上的边权和. 现在可以选择最多K个点.使得每个点的代价变为:这个 ...
- [IOI2005]Riv河流
题目链接:洛谷,BZOJ 前置知识:莫得 题解 直接考虑dp.首先想法是设状态 \(dp[u][i]\) 表示u的子树内建 \(i\) 个伐木场且子树内木头都运到某个伐木场的最小花费.发现这样的状态是 ...
- BZOJ 1812: [Ioi2005]riv( 树形dp )
树背包, 左儿子右兄弟来表示树, dp(x, y, z)表示结点x, x的子树及x的部分兄弟共建y个伐木场, 离x最近的伐木场是z时的最小代价. 时间复杂度O(N^2*K^2) ----------- ...
- 1812: [Ioi2005]riv
1812: [Ioi2005]riv Time Limit: 10 Sec Memory Limit: 64 MB Submit: 635 Solved: 388 [Submit][Status][D ...
随机推荐
- virtualBox+centos使用mount -t vboxsf挂载
1.先确保virtualBox安装目录下有对应的文件VBoxGuestAdditions.iso 2.点击设备下的“安装增强功能”,之后再centos可视化界面一步一步点击即可 3.virtualBo ...
- 《机器学习实战》-逻辑(Logistic)回归
目录 Logistic 回归 本章内容 回归算法 Logistic 回归的一般过程 Logistic的优缺点 基于 Logistic 回归和 Sigmoid 函数的分类 Sigmoid 函数 Logi ...
- Python之布尔
Python之布尔(bool) 在计算机中的所用判断,都是用布尔的True和False来判断的. 条件成立:True ( 1 ) 条件不成立:False ( 0 ) 以下情况是False: [ ]:空 ...
- 将文件大小kb转换成M
得到文件的大小的一般是直接到得到的是文件的字节大小,也就是kb,我们有的时候需要做单位换算成B或者M, 下面方法只是换成M,没有到G, 有更好的方法,请随时沟通,以便交流学习,谢谢. public s ...
- Oracle on Azure
价格列表 https://azure.microsoft.com/en-us/marketplace/partners/msopentech/oracle-db-12c/ Oracle-Base 安装 ...
- IntelliJ IDEA配置本地Tomcat方法---亲测有效
https://blog.csdn.net/hello_ljl/article/details/79258165
- linux & chmod & 777
linux & chmod & 777 https://github.com/xgqfrms-GitHub/Node-CLI-Tools/blob/master/bash-shell- ...
- [luoguP1021] 邮票面值设计(DFS + dp)
传送门 数据很小,可以DFS,判断的时候用背包DP 然而不知到枚举到哪里.... 首先枚举前可以求一遍题目中的MAX,下一层DFS的时候可以只枚举到MAX + 1,因为再往上就必定会出现断层 蒟蒻很菜 ...
- 【ZJOI2017 Round1练习&BZOJ5350】D5T1 masodik(DP,斜率优化)
题意:你要从(0,0)点走到(n,m), 每次只能往 x 轴或者 y 轴正方向移动一个单位距离.从(i,j)移动到(i,j+1)的代价为 ri,从(i,j)移动到(i+1,j)的代价为 cj. 求最小 ...
- hash存储结构【六】
一.概述: 我们可以将Redis中的Hashes类型看成具有String Key和String Value的map容器.所以该类型非常适合于存储值对象的信息.如Username.Password和Ag ...