URAL1553 维护一棵树,随时修改某个节点的权值,询问(x,y)路径上权值最大的点。

树是静态的,不过套动态树也能过,时限卡的严就得上树链剖分了。

还是那句话 splay的核心是splay(x) LCT的核心是access(x)

SPOJ OTOCI的代码改了两行就过了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int MaxNode=131000; int Lch[MaxNode];
int Rch[MaxNode];
int Pnt[MaxNode];
int Data[MaxNode];
int Sum[MaxNode];
int Rev[MaxNode];
int List[MaxNode];
int maxv[MaxNode];
int Total; inline bool isRoot(int t){
return (!Pnt[t]||(Lch[Pnt[t]]!=t&&Rch[Pnt[t]]!=t));
}
inline void Update(int cur){
maxv[cur]=Data[cur];
if(Lch[cur]!=0)maxv[cur]=max(maxv[cur],maxv[Lch[cur]]);
if(Rch[cur]!=0)maxv[cur]=max(maxv[cur],maxv[Rch[cur]]);
}
void Reverse(int cur){
if (!Rev[cur]) return;
swap(Lch[cur],Rch[cur]);
Rev[Lch[cur]]^=1;
Rev[Rch[cur]]^=1;
Rev[cur]=0;
}
void LeftRotate(int cur){
if (isRoot(cur)) return;
int pnt=Pnt[cur],anc=Pnt[pnt];
Lch[pnt]=Rch[cur];
if (Rch[cur]) Pnt[Rch[cur]]=pnt;
Rch[cur]=pnt;
Pnt[pnt]=cur;
Pnt[cur]=anc;
if (anc){
if (Lch[anc]==pnt) Lch[anc]=cur;
else if (Rch[anc]==pnt) Rch[anc]=cur;
}
Update(pnt);
Update(cur);
}
void RightRotate(int cur){
if (isRoot(cur)) return;
int pnt=Pnt[cur],anc=Pnt[pnt];
Rch[pnt]=Lch[cur];
if (Lch[cur]) Pnt[Lch[cur]]=pnt;
Lch[cur]=pnt;
Pnt[pnt]=cur;
Pnt[cur]=anc;
if (anc){
if (Rch[anc]==pnt) Rch[anc]=cur;
else if (Lch[anc]==pnt) Lch[anc]=cur;
}
Update(pnt);
Update(cur);
}
void Splay(int cur){
int pnt,anc;
List[++Total]=cur;
for (int i=cur;!isRoot(i);i=Pnt[i]) List[++Total]=Pnt[i];
for (;Total;--Total)
if (Rev[List[Total]]) Reverse(List[Total]);
while (!isRoot(cur)){
pnt=Pnt[cur];
if (isRoot(pnt)){// 父亲是根结点,做一次旋转
if (Lch[pnt]==cur) LeftRotate(cur);
else RightRotate(cur);
}
else{
anc=Pnt[pnt];
if (Lch[anc]==pnt){
if (Lch[pnt]==cur) LeftRotate(pnt),LeftRotate(cur);// 一条线
else RightRotate(cur),LeftRotate(cur);// 相反两次
}
else{
if (Rch[pnt]==cur) RightRotate(pnt),RightRotate(cur);// 一条线
else LeftRotate(cur),RightRotate(cur);// 相反两次
}
}
}
}
int Expose(int u){
int v=0;
for (;u;u=Pnt[u]) Splay(u),Rch[u]=v,v=u,Update(u);
for (;Lch[v];v=Lch[v]);
return v;
}
void Modify(int x,int d){
Splay(x);
Data[x]=d;
Update(x);
}
int Query(int x,int y){
int rx=Expose(x),ry=Expose(y);
if (rx==ry){
for (int u=x,v=0;u;u=Pnt[u]){
Splay(u);
if (!Pnt[u]) return max(max(maxv[Rch[u]],Data[u]),maxv[v]);
Rch[u]=v;
Update(u);
v=u;
}
}
return -1;
}
bool Join(int x,int y){
int rx=Expose(x),ry=Expose(y);
if (rx==ry) return false;
else{
Splay(x);
Rch[x]=0;
Rev[x]=1;
Pnt[x]=y;
Update(x);
return true;
}
}
void Cut(int x){
if (Pnt[x]){
Expose(x);
Pnt[Lch[x]]=0;
Lch[x]=0;
Update(x);
}
}
int n,Q; void init(){
Total=0;
memset(Rev,0,sizeof(Rev));
memset(Pnt,0,sizeof(Pnt));
memset(Lch,0,sizeof(Lch));
memset(Rch,0,sizeof(Rch));
memset(Sum,0,sizeof(Sum));
memset(Data,0,sizeof(Data));
memset(maxv,0,sizeof(maxv));
}
char cmd[22];
int main()
{ freopen("t.txt","r",stdin);
init();
scanf("%d",&n);
for(int i=0;i<n-1;i++)
{
int a,b;
scanf("%d%d",&a,&b);
Join(a,b);
}
scanf("%d",&Q);
while (Q--){
int x,y;
scanf("%s%d%d",cmd,&x,&y);
if (cmd[0]=='I'){
Modify(x,Data[x]+y);
}
if (cmd[0]=='G'){
printf("%d",Query(x,y));
if(Q>0)printf("\n");
} }
return 0;
}

  

URAL1553 Caves and Tunnels 树链剖分 动态树的更多相关文章

  1. luogu3703 [SDOI2017]树点涂色(线段树+树链剖分+动态树)

    link 你谷的第一篇题解没用写LCT,然后没观察懂,但是自己YY了一种不用LCT的做法 我们考虑对于每个点,维护一个fa,代表以1为根时候这个点的父亲 再维护一个bel,由于一个颜色相同的段一定是一 ...

  2. 【bzoj5210】最大连通子块和 树链剖分+线段树+可删除堆维护树形动态dp

    题目描述 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块和. 其中,一棵子树的最大连通子块和指的是:该子树 ...

  3. 【bzoj4712】洪水 树链剖分+线段树维护树形动态dp

    题目描述 给出一棵树,点有点权.多次增加某个点的点权,并在某一棵子树中询问:选出若干个节点,使得每个叶子节点到根节点的路径上至少有一个节点被选择,求选出的点的点权和的最小值. 输入 输入文件第一行包含 ...

  4. 【bzoj4999】This Problem Is Too Simple! 树链剖分+动态开点线段树

    题目描述 给您一颗树,每个节点有个初始值. 现在支持以下两种操作: 1. C i x(0<=x<2^31) 表示将i节点的值改为x. 2. Q i j x(0<=x<2^31) ...

  5. P3313 [SDOI2014]旅行——树链剖分+线段树(动态开点?)

    P3313 [SDOI2014]旅行 一棵树,其中的点分类,点有权值,在一条链上找到一类点中的最大值或总和: 树链剖分把树变成链: 把每个宗教单开一个线段树,维护区间总和和最大值: 宗教很多,需要动态 ...

  6. 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点

    题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...

  7. BZOJ 3589 动态树 (树链剖分+线段树)

    前言 众所周知,90%90\%90%的题目与解法毫无关系. 题意 有一棵有根树,两种操作.一种是子树内每一个点的权值加上一个同一个数,另一种是查询多条路径的并的点权之和. 分析 很容易看出是树链剖分+ ...

  8. B20J_3231_[SDOI2014]旅行_树链剖分+线段树

    B20J_3231_[SDOI2014]旅行_树链剖分+线段树 题意: S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,城市信仰不同的宗教,为了方便,我们用不同的正整数代表各种宗教. S国 ...

  9. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

随机推荐

  1. python3.x Day4 内置方法,装饰器,生成器,迭代器

    内置方法,就是python3提供的各种函数,可以认为是关键字,帮助进行一些列的牛x运算. abs()#取绝对值 all([])#可迭代对象中的所有元素都为True 则为True,只要至少一个为Fals ...

  2. 源码学习-Object类

    1.Object类是Java所有类的超类 2.查看Object的属性和方法,发现Object类没有属性,只有13个方法,其中7个本地方法. 3.接下来看具体的方法 3.1 Object() 默认的构造 ...

  3. Python之面向对象元类

    Python之面向对象元类 call方法: class People: def __init__(self,name): self.name=name # def __call__(self, *ar ...

  4. SQL SERVER占用CPU过高排查和优化

    操作系统是Windows2008R2 ,数据库是SQL2014 64位. 近阶段服务器出现过几次死机,管理员反馈机器内存使用率100%导致机器卡死.于是做了个监测服务器的软件实时记录CPU数据,几日观 ...

  5. 洛谷 通天系列 P1760 P1757 P1759

    P1760 通天之汉诺塔 汉诺塔问题.一个高精乘单精解决 ans=2^n-1 /*by SilverN*/ #include<algorithm> #include<iostream ...

  6. select语句中会影响查询效率的因素

    1.没有创建索引,或者没有正确使用索引;2.存在死锁的情况,从而导致select语句挂起; 3.返回不必要的列,如很多人喜欢在程序中使用select * from 这样会查询表或视图中的所有字段,如果 ...

  7. linux network name space

    linux network namespace概念类似于网络中的 VRF (virtual routing and forwarding).但是,你不知道VRF的概念也没关系,下面我们通过一个简单的介 ...

  8. [Maid] Write Tasks in Markdown with Maid

    Maid enables you to write your tasks in Markdown. Create a maidfile.md or a README.mdthen add Header ...

  9. android/java经常使用的工具类源代码

    anroid.java经常使用的工具类源代码,当中包含文件操作.MD5算法.文件操作.字符串操作.调试信息log.base64等等. 下载地址:http://download.csdn.net/det ...

  10. Tcl学习之--文件操作

    Tcl中文件名称操作遵循Unix/Linux的命名规范. x/y/z表示x文件夹下的y 子文件夹及y以下的子文件夹z. ~admin/email则表示admin用户的email目录. l  file ...