URAL1553 维护一棵树,随时修改某个节点的权值,询问(x,y)路径上权值最大的点。

树是静态的,不过套动态树也能过,时限卡的严就得上树链剖分了。

还是那句话 splay的核心是splay(x) LCT的核心是access(x)

SPOJ OTOCI的代码改了两行就过了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int MaxNode=131000; int Lch[MaxNode];
int Rch[MaxNode];
int Pnt[MaxNode];
int Data[MaxNode];
int Sum[MaxNode];
int Rev[MaxNode];
int List[MaxNode];
int maxv[MaxNode];
int Total; inline bool isRoot(int t){
return (!Pnt[t]||(Lch[Pnt[t]]!=t&&Rch[Pnt[t]]!=t));
}
inline void Update(int cur){
maxv[cur]=Data[cur];
if(Lch[cur]!=0)maxv[cur]=max(maxv[cur],maxv[Lch[cur]]);
if(Rch[cur]!=0)maxv[cur]=max(maxv[cur],maxv[Rch[cur]]);
}
void Reverse(int cur){
if (!Rev[cur]) return;
swap(Lch[cur],Rch[cur]);
Rev[Lch[cur]]^=1;
Rev[Rch[cur]]^=1;
Rev[cur]=0;
}
void LeftRotate(int cur){
if (isRoot(cur)) return;
int pnt=Pnt[cur],anc=Pnt[pnt];
Lch[pnt]=Rch[cur];
if (Rch[cur]) Pnt[Rch[cur]]=pnt;
Rch[cur]=pnt;
Pnt[pnt]=cur;
Pnt[cur]=anc;
if (anc){
if (Lch[anc]==pnt) Lch[anc]=cur;
else if (Rch[anc]==pnt) Rch[anc]=cur;
}
Update(pnt);
Update(cur);
}
void RightRotate(int cur){
if (isRoot(cur)) return;
int pnt=Pnt[cur],anc=Pnt[pnt];
Rch[pnt]=Lch[cur];
if (Lch[cur]) Pnt[Lch[cur]]=pnt;
Lch[cur]=pnt;
Pnt[pnt]=cur;
Pnt[cur]=anc;
if (anc){
if (Rch[anc]==pnt) Rch[anc]=cur;
else if (Lch[anc]==pnt) Lch[anc]=cur;
}
Update(pnt);
Update(cur);
}
void Splay(int cur){
int pnt,anc;
List[++Total]=cur;
for (int i=cur;!isRoot(i);i=Pnt[i]) List[++Total]=Pnt[i];
for (;Total;--Total)
if (Rev[List[Total]]) Reverse(List[Total]);
while (!isRoot(cur)){
pnt=Pnt[cur];
if (isRoot(pnt)){// 父亲是根结点,做一次旋转
if (Lch[pnt]==cur) LeftRotate(cur);
else RightRotate(cur);
}
else{
anc=Pnt[pnt];
if (Lch[anc]==pnt){
if (Lch[pnt]==cur) LeftRotate(pnt),LeftRotate(cur);// 一条线
else RightRotate(cur),LeftRotate(cur);// 相反两次
}
else{
if (Rch[pnt]==cur) RightRotate(pnt),RightRotate(cur);// 一条线
else LeftRotate(cur),RightRotate(cur);// 相反两次
}
}
}
}
int Expose(int u){
int v=0;
for (;u;u=Pnt[u]) Splay(u),Rch[u]=v,v=u,Update(u);
for (;Lch[v];v=Lch[v]);
return v;
}
void Modify(int x,int d){
Splay(x);
Data[x]=d;
Update(x);
}
int Query(int x,int y){
int rx=Expose(x),ry=Expose(y);
if (rx==ry){
for (int u=x,v=0;u;u=Pnt[u]){
Splay(u);
if (!Pnt[u]) return max(max(maxv[Rch[u]],Data[u]),maxv[v]);
Rch[u]=v;
Update(u);
v=u;
}
}
return -1;
}
bool Join(int x,int y){
int rx=Expose(x),ry=Expose(y);
if (rx==ry) return false;
else{
Splay(x);
Rch[x]=0;
Rev[x]=1;
Pnt[x]=y;
Update(x);
return true;
}
}
void Cut(int x){
if (Pnt[x]){
Expose(x);
Pnt[Lch[x]]=0;
Lch[x]=0;
Update(x);
}
}
int n,Q; void init(){
Total=0;
memset(Rev,0,sizeof(Rev));
memset(Pnt,0,sizeof(Pnt));
memset(Lch,0,sizeof(Lch));
memset(Rch,0,sizeof(Rch));
memset(Sum,0,sizeof(Sum));
memset(Data,0,sizeof(Data));
memset(maxv,0,sizeof(maxv));
}
char cmd[22];
int main()
{ freopen("t.txt","r",stdin);
init();
scanf("%d",&n);
for(int i=0;i<n-1;i++)
{
int a,b;
scanf("%d%d",&a,&b);
Join(a,b);
}
scanf("%d",&Q);
while (Q--){
int x,y;
scanf("%s%d%d",cmd,&x,&y);
if (cmd[0]=='I'){
Modify(x,Data[x]+y);
}
if (cmd[0]=='G'){
printf("%d",Query(x,y));
if(Q>0)printf("\n");
} }
return 0;
}

  

URAL1553 Caves and Tunnels 树链剖分 动态树的更多相关文章

  1. luogu3703 [SDOI2017]树点涂色(线段树+树链剖分+动态树)

    link 你谷的第一篇题解没用写LCT,然后没观察懂,但是自己YY了一种不用LCT的做法 我们考虑对于每个点,维护一个fa,代表以1为根时候这个点的父亲 再维护一个bel,由于一个颜色相同的段一定是一 ...

  2. 【bzoj5210】最大连通子块和 树链剖分+线段树+可删除堆维护树形动态dp

    题目描述 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块和. 其中,一棵子树的最大连通子块和指的是:该子树 ...

  3. 【bzoj4712】洪水 树链剖分+线段树维护树形动态dp

    题目描述 给出一棵树,点有点权.多次增加某个点的点权,并在某一棵子树中询问:选出若干个节点,使得每个叶子节点到根节点的路径上至少有一个节点被选择,求选出的点的点权和的最小值. 输入 输入文件第一行包含 ...

  4. 【bzoj4999】This Problem Is Too Simple! 树链剖分+动态开点线段树

    题目描述 给您一颗树,每个节点有个初始值. 现在支持以下两种操作: 1. C i x(0<=x<2^31) 表示将i节点的值改为x. 2. Q i j x(0<=x<2^31) ...

  5. P3313 [SDOI2014]旅行——树链剖分+线段树(动态开点?)

    P3313 [SDOI2014]旅行 一棵树,其中的点分类,点有权值,在一条链上找到一类点中的最大值或总和: 树链剖分把树变成链: 把每个宗教单开一个线段树,维护区间总和和最大值: 宗教很多,需要动态 ...

  6. 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点

    题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...

  7. BZOJ 3589 动态树 (树链剖分+线段树)

    前言 众所周知,90%90\%90%的题目与解法毫无关系. 题意 有一棵有根树,两种操作.一种是子树内每一个点的权值加上一个同一个数,另一种是查询多条路径的并的点权之和. 分析 很容易看出是树链剖分+ ...

  8. B20J_3231_[SDOI2014]旅行_树链剖分+线段树

    B20J_3231_[SDOI2014]旅行_树链剖分+线段树 题意: S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,城市信仰不同的宗教,为了方便,我们用不同的正整数代表各种宗教. S国 ...

  9. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

随机推荐

  1. SQL-如何使用 MongoDB和PyMongo。

    先决条件 在开始之前,请确保已经安装了 PyMongo 发行版. 在 Python shell 中,下面的代码应该在不引发异常的情况下运行: >>> import pymongo 假 ...

  2. 集训第五周动态规划 D题 LCS

    Description In a few months the European Currency Union will become a reality. However, to join the ...

  3. 本地==〉Github(push)

    [概述] Git中的项目是本地的,为了可以协同工作.需要将项目推送到GitHub服务器上. [步骤] 1) 第一步:创建项目 2) 第二步:在github上创建一个同名的空项目 ①选择Your rep ...

  4. Eclipse4.5在线安装Aptana插件及配置代码提示教程

    一.Aptana插件官网地址         我在网上试过登陆到aptana官网后点击下载,选择下载eclipse插件版,然后页面给出一串地址:http://download.aptana.com/s ...

  5. Thinkphp5.0 的视图view的模板布局

    Thinkphp5.0 的视图view的模板布局 使用include,文件包含: <!-- 头部 --> <div class="header"> {inc ...

  6. Python基础之 一 字典(dict)

    字典:是一种key - value的数据类型.语法:info = { key:value }特性:无序,key必须唯一(所以天生去重) 方法如下:del dict[key]:删除字典指定键len(di ...

  7. codeforces Gym 100971 A、B、C、F、G、K、L

    A题  直接把问号全部变为陆地如果所有陆地连通    那么再逐个把刚才变成陆地的问号变为水如果依旧连通有多种解 为什么我的代码跑不过去,和网上的题解思路一模一样!!?? #include<cst ...

  8. AOJ 0118 Property Distribution (DFS)

    http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=46522 简单DFS,题目翻译参考  http://blog.csdn.net ...

  9. 洛谷 U41571 Agent2

    U41571 Agent2 题目背景 炎炎夏日还没有过去,Agent们没有一个想出去外面搞事情的.每当ENLIGHTENED总部组织活动时,人人都说有空,结果到了活动日,却一个接着一个咕咕咕了.只有不 ...

  10. 【Spark】Spark容错机制

    引入 一般来说,分布式数据集的容错性有两种方式:数据检查点和记录数据的更新. 面向大规模数据分析,数据检查点操作成本非常高,须要通过数据中心的网络连接在机器之间复制庞大的数据集,而网络带宽往往比内存带 ...