A - Collecting Bugs

Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64u

Appoint description: 
System Crawler  (2014-05-15)

Description

Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stuff, he collects software bugs. When Ivan gets a new program, he classifies all possible bugs into n categories. Each day he discovers exactly one bug in the program and adds information about it and its category into a spreadsheet. When he finds bugs in all bug categories, he calls the program disgusting, publishes this spreadsheet on his home page, and forgets completely about the program. 
Two companies, Macrosoft and Microhard are in tight competition. Microhard wants to decrease sales of one Macrosoft program. They hire Ivan to prove that the program in question is disgusting. However, Ivan has a complicated problem. This new program has s subcomponents, and finding bugs of all types in each subcomponent would take too long before the target could be reached. So Ivan and Microhard agreed to use a simpler criteria --- Ivan should find at least one bug in each subsystem and at least one bug of each category. 
Macrosoft knows about these plans and it wants to estimate the time that is required for Ivan to call its program disgusting. It's important because the company releases a new version soon, so it can correct its plans and release it quicker. Nobody would be interested in Ivan's opinion about the reliability of the obsolete version. 
A bug found in the program can be of any category with equal probability. Similarly, the bug can be found in any given subsystem with equal probability. Any particular bug cannot belong to two different categories or happen simultaneously in two different subsystems. The number of bugs in the program is almost infinite, so the probability of finding a new bug of some category in some subsystem does not reduce after finding any number of bugs of that category in that subsystem. 
Find an average time (in days of Ivan's work) required to name the program disgusting.

Input

Input file contains two integer numbers, n and s (0 < n, s <= 1 000).

Output

Output the expectation of the Ivan's working days needed to call the program disgusting, accurate to 4 digits after the decimal point.

Sample Input

1 2

Sample Output

3.0000

题意及分析:
转自:http://blog.csdn.net/morgan_xww/article/details/6774708
 dp求期望的题。 
  • 题意:一个软件有s个子系统,会产生n种bug。
  • 某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中。
  • 求找到所有的n种bug,且每个子系统都找到bug,这样所要的天数的期望。
  • 需要注意的是:bug的数量是无穷大的,所以发现一个bug,出现在某个子系统的概率是1/s,
  • 属于某种类型的概率是1/n。
  • 解法:
  • dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望。
  • 显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。
  • dp[i][j]状态可以转化成以下四种:
  • dp[i][j]    发现一个bug属于已经找到的i种bug和j个子系统中
  • dp[i+1][j]  发现一个bug属于新的一种bug,但属于已经找到的j种子系统
  • dp[i][j+1]  发现一个bug属于已经找到的i种bug,但属于新的子系统
  • dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统
  • 以上四种的概率分别为:
  • p1 =     i*j / (n*s)
  • p2 = (n-i)*j / (n*s)
  • p3 = i*(s-j) / (n*s)
  • p4 = (n-i)*(s-j) / (n*s)
  • 又有:期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +...
  • 所以:
  • dp[i,j] = p1*dp[i,j] + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] + 1;
  • 整理得:
  • dp[i,j] = ( 1 + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] )/( 1-p1 )
  • = ( n*s + (n-i)*j*dp[i+1,j] + i*(s-j)*dp[i,j+1] + (n-i)*(s-j)*dp[i+1,j+1] )/( n*s - i*j )
 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<map>
#include<vector>
#include<set> #define N 1005
#define M 100000
#define inf 1000000007
#define mod 1000000007
#define mod2 100000000
#define ll long long
#define maxi(a,b) (a)>(b)? (a) : (b)
#define mini(a,b) (a)<(b)? (a) : (b) using namespace std; int n;
int s;
double dp[N][N];
double p1,p2; void ini()
{
memset(dp,,sizeof(dp));
p1=(1.0)*/n;
p2=(1.0)/s;
// printf(" %.4f %.4f\n",p1,p2);
} void solve()
{
int i,j;
for(i=n;i>=;i--){
for(j=s;j>=;j--){
if(i==n && j==s) continue;
dp[i][j]=+dp[i+][j]*p1*(n-i)*p2*j+dp[i][j+]*p1*i*p2*(s-j)
+dp[i+][j+]*p1*(n-i)*p2*(s-j);
dp[i][j]/=(-p1*i*p2*j);
}
} // for(i=n;i>=0;i--){
// for(j=s;j>=0;j--){
// printf(" i=%d j=%d dp=%.4f\n",i,j,dp[i][j]);
// }
//}
} void out()
{
printf("%.4f\n",dp[][]);
} int main()
{
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
//scanf("%d",&T);
// for(int cnt=1;cnt<=T;cnt++)
// while(T--)
while(scanf("%d%d",&n,&s)!=EOF)
{
ini();
solve();
out();
}
return ;
}

POJ 2096 (dp求期望)的更多相关文章

  1. Poj 2096 (dp求期望 入门)

    / dp求期望的题. 题意:一个软件有s个子系统,会产生n种bug. 某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中. 求找到所有的n种bug,且每个子系统都找到bug,这样所要 ...

  2. HDU3853-LOOPS(概率DP求期望)

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Su ...

  3. hdu4035 Maze (树上dp求期望)

    dp求期望的题. 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点1处(概率为ki) 2.找到出口,走出迷宫 ...

  4. POJ2096 Collecting Bugs(概率DP,求期望)

    Collecting Bugs Ivan is fond of collecting. Unlike other people who collect post stamps, coins or ot ...

  5. HDU 3853 LOOP (概率DP求期望)

    D - LOOPS Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit St ...

  6. Poj 2096 Collecting Bugs (概率DP求期望)

    C - Collecting Bugs Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64 ...

  7. POJ 2096 Collecting Bugs 期望dp

    题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...

  8. POJ 2096 找bug 期望dp

    题目大意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcompon ...

  9. loj 1038(dp求期望)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=25915 题意:求一个数不断地除以他的因子,直到变成1的时候 除的次 ...

随机推荐

  1. Python 基础-3

    使用while打印1 2 3 4  5 6   8 9 10 count = 0 #while count < 10: while count < 10: count += 1 if co ...

  2. CS 分解

    将学习到什么 CS 分解是分划的酉矩阵在分划的酉等价之下的标准型. 它的证明涉及奇异值分解.QR 分解以及一个简单习题.   一个直观的习题 设 \(\Gamma, L \in M_p\). 假设 \ ...

  3. #include <> 和 #inlude ""的区别

    #include < >引用的是编译器的类库路径里面的头文件#include  " "引用的是你程序目录的相对路径中的头文件,在程序目录的相对路径中找不到该头文件时会继 ...

  4. 什么是Java内存模型中的happens-before

    Java内存模型JMM Java内存模型(即Java Memory Model , 简称JMM),本身是一种抽象的概念,并不真实存在,它描述的是一组规则或规范,通过这组规范定义了程序个各个变量(包括实 ...

  5. 洛谷 P1126 机器人搬重物 (BFS)

    题目链接:https://www.luogu.org/problemnew/show/P1126 吐槽:这题很阴险 一开始没把格子图转化成点图:30分 转化成点图,发现样例过不去,原来每步要判断vis ...

  6. Git学习——从远程库克隆

    克隆一个本地库 首先准备好一个远程库.再用命令克隆一个本地库. git clone git@github.com:<github账户>/<远程库名>.git 克隆一个仓库,首先 ...

  7. 前端开发中提到的“脚手架”到底指什么,CLI?gulp 和 gulp-cli有什么区别

    一般来说,脚手架是帮你减少「为减少重复性工作而做的重复性工作」的工具. gulp和gulp-cli的区别可以看这个task - what does gulp-"cli" stand ...

  8. UnicodeDecodeError: 'ascii' codec can't decode byte 0xe6 in position 287: ordinal not in range(128)

    python的str默认是ascii编码,和unicode编码冲突,就会报这个错误. import sys reload(sys) sys.setdefaultencoding('utf8')

  9. python中实现格式化输出 %用法

    当我们在python中需要打印出特定格式的内容时可以用到这个方法,方法介绍如下: 例如我们现在要收集用户的一些个人信息,这时候我们的代码如下: name=input("name: " ...

  10. centos 7.3 快速安装ceph

    Ceph的部署手册(Centos7.3)     Ceph简介 Ceph是一种为优秀的性能.可靠性和可扩展性而设计的统一的.分布式文件系统. 部署逻辑架构 准备3台主机,并且修改主机名(hostnam ...