Making the Grade(POJ3666)
题目大意:
给出长度为n的整数数列,每次可以将一个数加1或者减1,最少要多少次可以将其变成单调增或者单调减(不严格).
题解:
1.一开始我有一个猜想,就是不管怎么改变,最终的所有数都是原来的某个数。然而我并不会证明,然而我属于那种不彻底弄清楚就不会去写的那种顽固分子,于是就拖了好几天。网络上有很多关于此题的题解,确实用了这个猜想来离散化,但是都是讲怎么dp,然后最后扯一句“由于数据比较大,可以离散化”之类的话,要么就是相当粗略的证明(也许已经说的够清楚了只不过我没理解...)。
2.今天早上起来洗漱的时候,感觉头脑比较清醒,再次想了一下这个问题,想到一个自认为正确的证明:
记原来的数从小到大排序后分别是$a_1\ a_2\ a_3\cdots a_n$ 修改后从左到右分别是$b_1\ b_2\ b_3\cdots b_n$. 为了方便描述,在数轴上标出这些点,称为关键点。
假设存在$a_s<b_i<=b_{i+1}<=\cdots <=b_j<a_{s+1}$
情况一:如果这些b都相等,那么把这些b都改成$a_s$或者$a_{s+1}$ 肯定会有一种更优。
情况二:如果不全相等,那么肯定存在 $b_p\ b_{p+1}\ b_{p+2}\cdots b_q$,他们的值相等,那么把他们移到左边的关键点或者右边的关键点,肯定有一种会更加优. 不断这样移动,最后就变成情况一了。
综上至少存在一种最优方案,最终的所有数都是原来的某个数。
因此可以离散化之后做dp,dp[i][j]表示把前i个数变成单调增(不严格)且第i个数变成原来第j大的数的最小代价。
dp[i][j]=min{dp[i-1][1...j]}+abs(a[i]-b[j]).
单调减(不严格)的情况也一样,更加方便的是可以把原数组倒转后做单调增的dp。
另外这题和CF Codeforces Round #371 (Div. 1)的C题类似,有个超简单的nlogn做法。可以看这篇:http://www.cnblogs.com/vb4896/p/5894578.html
代码:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <vector>
#include <map>
#include <cstdlib>
#include <set>
using namespace std; #define X first
#define Y second
#define Mod 1000000007
#define N 3010
typedef long long ll;
typedef pair<int,int> pii; inline int Mul(int x,int y){return 1ll*x*y%Mod;}
inline int Add(int x,int y){return ((x+y)%Mod+Mod)%Mod;} int n,m;
int a[N],b[N];
ll dp[N][N],Ans=1ll<<; void Solve()
{
for (int j=;j<=m;j++) dp[][j]=abs(b[j]-a[]);
for (int i=;i<=n;i++)
{
ll tmp=1ll<<;
for (int j=;j<=m;j++)
{
tmp=min(tmp,dp[i-][j]);
dp[i][j]=abs(b[j]-a[i]);
dp[i][j]+=tmp; }
}
for (int j=;j<=m;j++) Ans=min(Ans,dp[n][j]);
} int main()
{
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout); scanf("%d",&n);
for (int i=;i<=n;i++) scanf("%d",&a[i]),b[i]=a[i]=a[i]-i;
sort(b+,b+n+);
for (int i=;i<=n;i++) if (i== || b[i]!=b[i-]) b[++m]=b[i]; Solve();
printf("%I64d\n",Ans); return ;
}
Making the Grade(POJ3666)的更多相关文章
- Making the Grade [POJ3666] [DP]
题意: 给定一个序列,以最小代价将其变成单调不增或单调不减序列,代价为Σabs(i变化后-i变化前),序列长度<=2000,单个数字<=1e9 输入:(第一行表示序列长度,之后一行一个表示 ...
- POJ3666 Making the Grade
POJ3666 Making the Grade 题意: 给定一个长度为n的序列A,构造一个长度为n的序列B,满足b非严格单调,并且最小化S=∑i=1N |Ai-Bi|,求出这个最小值S,1<= ...
- BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...
- poj3666 Making the grade【线性dp】
Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total Submissions:10187 Accepted: 4724 ...
- POJ3666 Making the Grade [DP,离散化]
题目传送门 Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9090 Accepted: ...
- poj3666 Making the Grade(基础dp + 离散化)
Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...
- LG2893/POJ3666 「USACO2008FEB」Making the Grade 线性DP+决策集优化
问题描述 LG2893 POJ3666 题解 对于\(A\)中的每一个元素,都将存在于\(B\)中. 对\(A\)离散化. 设\(opt_{i,j}\)代表\([1,i]\),结尾为\(j\)的最小代 ...
- [poj3666]Making the Grade(DP/左偏树)
题目大意:给你一个序列a[1....n],让你求一个序列b[1....n],满足 bi =a && bc,则最小的调整可以是把b变成c. 所以归纳可知上面结论成立. dp[i][j] ...
- 【POJ3666】Making the Grade 离散化+DP
学到了一个引理:在满足S最小化的条件下,一定存在一种构造序列B的方案,使得序列B中的数值都来自于A中.(数学归纳法+中位数定理得证) 对于状态的表示来说,首先肯定有一个 i ,表示选到了第 i 个数时 ...
随机推荐
- C函数
求阶乘 int fac(int a) { int i; ;i>;i--) a*=i; return a; }
- Hibernate的映射文件配置
对象关系的映射是用一个XML文档来说明的.映射文档可以使用工具来生成,如XDoclet,Middlegen和AndroMDA等.下面从一个映射的例子开始讲解映射元素,映射文件的代码如下: <?x ...
- 解决 java 使用ssl过程中出现"PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target"
今天,封装HttpClient使用ssl时报一下错误: javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorExc ...
- WeX5的简单介绍及UI的简单讲解
WeX5的简单介绍及UI的简单讲解 (2016-01-13 14:49:05) 标签: it 分类: WeX5的初步自学 一.WeX5的简单讲解 1.WeX5是前端快速开发框架,可开发跨端运行应用.是 ...
- MySQL存储IP地址操作
数据库数据表创建语法: DROP TABLE IF EXISTS `admin`; CREATE TABLE IF NOT EXISTS `admin`( `adminid` INT UNSIGNED ...
- 初学js/jquery 心得
1.多个对象操作的时候可以放在一起,eg: $('.send_message, .friends_increment').blur(function() {}); 2.三元表达式与if else,eg ...
- 移动APP的开发迭代离不开测试,你搞清楚其中的关键点了吗?
App测试的一个要求是一个beta测试环境.为此,操作系统制造商要么提供他们自己的测试环境,比如:Testflight (iOS),要么可以使用任一商用工具,如:HockeyApp (Android) ...
- VS中Qt的探索02
边看C++ GUI QT4教程,边在VS2010中进行编程学习探索. 在使用Qt设计师时,其中每一个对象的ObjectName属性是非常重要的,在程序功能的实现过程中,需要不断的使用该变量名. 当所有 ...
- zabbix3.0.4 部署之七 (zabbix3.0.4 邮件报警) & 微信报警
1 [root@sv-zabbix ~]# cat /usr/local/zabbix/share/zabbix/alertscripts/sendEmail.sh #!/bin/bash#SMTP_ ...
- struts 头像上传
java代码: 1 package cn.itcast.nsfw.user.action; import java.io.File; import java.io.IOException; impor ...