题目背景

动态树

题目描述

给定N个点以及每个点的权值,要你处理接下来的M个操作。操作有4种。操作从0到3编号。点从1到N编号。

0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和。保证x到y是联通的。

1:后接两个整数(x,y),代表连接x到y,若x到Y已经联通则无需连接。

2:后接两个整数(x,y),代表删除边(x,y),不保证边(x,y)存在。

3:后接两个整数(x,y),代表将点X上的权值变成Y。

输入输出格式

输入格式:

第1行两个整数,分别为N和M,代表点数和操作数。

第2行到第N+1行,每行一个整数,整数在[1,10^9]内,代表每个点的权值。

第N+2行到第N+M+1行,每行三个整数,分别代表操作类型和操作所需的量。

输出格式:

对于每一个0号操作,你须输出X到Y的路径上点权的Xor和。

输入输出样例

输入样例#1:

3 3
1
2
3
1 1 2
0 1 2
0 1 1
输出样例#1:

3
1

说明

数据范围: 


因为只是模板题吧。。在这里直接放上代码。。

关于LCT可以看论文:QTREE解法的一些研究

 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; int read(){
char ch;
int re=;
bool flag=;
while((ch=getchar())!='-'&&(ch<''||ch>''));
ch=='-'?flag=:re=ch-'';
while((ch=getchar())>=''&&ch<='') re=re*+ch-'';
return flag?-re:re;
} struct Splay{
int ch[],xr,fa;
bool rev;
}; const int maxn=; int n,m,top;
int val[maxn],stk[maxn];
Splay T[maxn]; inline void push_up(int x){ T[x].xr=T[T[x].ch[]].xr^T[T[x].ch[]].xr^val[x]; } inline bool isroot(int x){
return T[T[x].fa].ch[]!=x&&T[T[x].fa].ch[]!=x;
} inline void push_down(int x){
if(T[x].rev){
T[T[x].ch[]].rev^=;
T[T[x].ch[]].rev^=;
swap(T[x].ch[],T[x].ch[]);
T[x].rev=;
}
} void rot(int x){
int y=T[x].fa,z=T[y].fa,l,r;
if(T[y].ch[]==x) l=;
else l=;
r=l^;
T[x].fa=z;
if(!isroot(y)) T[z].ch[T[z].ch[]==y]=x;
T[T[x].ch[r]].fa=y;
T[y].ch[l]=T[x].ch[r];
T[y].fa=x;
T[x].ch[r]=y;
push_up(y),push_up(x);
} void splay(int x){
top=; stk[top]=x;
for(int i=x;!isroot(i);i=T[i].fa) stk[++top]=T[i].fa;
for(int i=top;i;i--) push_down(stk[i]);
while(!isroot(x)){
int y=T[x].fa,z=T[y].fa;
if(!isroot(y)){
if((T[y].ch[]==x)^(T[z].ch[]==y)) rot(x);
else rot(y);
}
rot(x);
}
} void acc(int x){
int t=;
while(x){
splay(x);
T[x].ch[]=t;
push_up(x);
t=x; x=T[x].fa;
}
} void make_root(int x){
acc(x);
splay(x);
T[x].rev^=;
} int find(int x){
acc(x);
splay(x);
while(T[x].ch[]) x=T[x].ch[];
return x;
} void split(int x,int y){
make_root(x);
acc(y);
splay(y);
} void cut(int x,int y){
split(x,y);
if(T[y].ch[]==x) T[y].ch[]=,T[x].fa=;
} void link(int x,int y){
make_root(x);
T[x].fa=y;
} int main(){
// freopen("temp.in","r",stdin);
n=read(),m=read();
for(int i=;i<=n;i++){
val[i]=read();
T[i].xr=val[i];
}
int opt,x,y,xx,yy;
while(m--){
opt=read(),x=read(),y=read();
switch(opt){
case :{
split(x,y);
printf("%d\n",T[y].xr);
break;
}
case :{
xx=find(x),yy=find(y);
if(xx!=yy) link(x,y);
break;
}
case :{
xx=find(x),yy=find(y);
if(xx==yy) cut(x,y);
break;
}
case :{
acc(x);
splay(x);
val[x]=y;
push_up(x);
break;
}
}
}
return ;
}

luoguP3690 【模板】Link Cut Tree (动态树)[LCT]的更多相关文章

  1. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  2. 洛谷.3690.[模板]Link Cut Tree(动态树)

    题目链接 LCT(良心总结) #include <cstdio> #include <cctype> #include <algorithm> #define gc ...

  3. LCT(link cut tree) 动态树

    模板参考:https://blog.csdn.net/saramanda/article/details/55253627 综合各位大大博客后整理的模板: #include<iostream&g ...

  4. Link Cut Tree 动态树 小结

    动态树有些类似 树链剖分+并查集 的思想,是用splay维护的 lct的根是动态的,"轻重链"也是动态的,所以并没有真正的轻重链 动态树的操作核心是把你要把 修改/询问/... 等 ...

  5. 洛谷P3690 Link Cut Tree (动态树)

    干脆整个LCT模板吧. 缺个链上修改和子树操作,链上修改的话join(u,v)然后把v splay到树根再打个标记就好. 至于子树操作...以后有空的话再学(咕咕咕警告) #include<bi ...

  6. 洛谷P3690 [模板] Link Cut Tree [LCT]

    题目传送门 Link Cut Tree 题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代 ...

  7. 模板Link Cut Tree (动态树)

    题目描述 给定N个点以及每个点的权值,要你处理接下来的M个操作.操作有4种.操作从0到3编号.点从1到N编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和.保证x到y是联 ...

  8. [BZOJ2631]tree 动态树lct

    2631: tree Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 5171  Solved: 1754[Submit][Status][Discus ...

  9. 【刷题】洛谷 P3690 【模板】Link Cut Tree (动态树)

    题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor ...

  10. Link Cut Tree 总结

    Link-Cut-Tree Tags:数据结构 ##更好阅读体验:https://www.zybuluo.com/xzyxzy/note/1027479 一.概述 \(LCT\),动态树的一种,又可以 ...

随机推荐

  1. Spark开发环境搭建和作业提交

    Spark高可用集群搭建 在所有节点上下载或上传spark文件,解压缩安装,建立软连接 配置所有节点spark安装目录下的spark-evn.sh文件 配置slaves 配置spark-default ...

  2. 编译自己的jdk(使用openJDK源码编译jdk )

    找到openjdk网站(http://hg.openjdk.java.net/) 选择需要编译的版本,浏览readme文件,有获取源码及编译步骤 CentOS-7-x86_64-DVD-1804.is ...

  3. Delphi 字符串函数SysUtils单元 AnsiSameStr、AnsiSameText、AnsiCompareStr、AnsiCompareText、AnsiCompareFileName、AnsiUpperCase、AnsiLowerCase、AnsiUpperCaseFileName、AnsiLowerCaseFileName、AnsiPos、AnsiQuotedStr

    USES 单元 SysUtils 非 StrUtils AnsiSameStr.AnsiSameText.AnsiCompareStr.AnsiCompareText.AnsiCompareFileN ...

  4. shell 判断字符串是否包含另一个字符串

    1.使用grep s1="abcdefg" s2="bcd" result=$(echo $s1 | grep "${s2}") if [[ ...

  5. java中循环删除list中元素的方法

    重点哈 印象中循环删除list中的元素使用for循环的方式是有问题的,但是可以使用增强的for循环,然后今天在使用时发现报错了,然后去科普了一下,再然后发现这是一个误区.下面就来讲一讲..伸手党可直接 ...

  6. PHP基础知识总结(四) 留言板例子 知识应用

    1.留言板显示页面:note.php <?php $host = "127.0.0.1"; $user = "root"; $pwd = "zs ...

  7. 深入理解dijkstra+堆优化

    深入理解dijkstra+堆优化 其实就这几种代码几种结构,记住了完全就可以举一反三,所以多记多练多优化多思考. Dijkstra   对于一个有向图或无向图,所有边权为正(边用邻接矩阵的形式给出), ...

  8. kafka ConsumerConfig 配置

  9. (57)C# frame4 调用frame2

    http://msdn.microsoft.com/zh-cn/library/bbx34a2h.aspx https://www.cnblogs.com/weixing/archive/2012/0 ...

  10. Eclipes更改字体颜色

    有图有真像 更改字体大小