如何实现sqrt()
jdk中实现sqrt()是native方法,没法看到具体的实现细节,所以自己整理下,以便后续查阅。
1、暴力法,从0开始每次增加1e-6,直到非常接近
2、牛顿法,求n的平方根
while(abs(x-x_pre)>1e-6){
x_pre = x;
x = (x+n/x)/2;
}
return x;
3、二分法
4、快速平方根倒数,https://en.wikipedia.org/wiki/Fast_inverse_square_root
float Q_rsqrt( float number )
{
long i;
float x2, y;
const float threehalfs = 1.5F; x2 = number * 0.5F;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5f3759df - ( i >> ); // what the fuck?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed return y;
}
java版本
public static float invSqrt(float x) {
float xhalf = 0.5f*x;
int i = Float.floatToIntBits(x);
i = 0x5f3759df - (i>>);
x = Float.intBitsToFloat(i);
x = x*(1.5f - xhalf*x*x);
return x;
}
5、快速计算(int)(sqrt(x)),利用空间换时间
public class APIsqrt2 {
final static int[] table = { 0, 16, 22, 27, 32, 35, 39, 42, 45, 48, 50, 53,
55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84,
86, 87, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104,
106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 128, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 144,
145, 146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155,
156, 157, 158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166,
167, 167, 168, 169, 170, 170, 171, 172, 173, 173, 174, 175, 176,
176, 177, 178, 178, 179, 180, 181, 181, 182, 183, 183, 184, 185,
185, 186, 187, 187, 188, 189, 189, 190, 191, 192, 192, 193, 193,
194, 195, 195, 196, 197, 197, 198, 199, 199, 200, 201, 201, 202,
203, 203, 204, 204, 205, 206, 206, 207, 208, 208, 209, 209, 210,
211, 211, 212, 212, 213, 214, 214, 215, 215, 216, 217, 217, 218,
218, 219, 219, 220, 221, 221, 222, 222, 223, 224, 224, 225, 225,
226, 226, 227, 227, 228, 229, 229, 230, 230, 231, 231, 232, 232,
233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 240,
240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246,
247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253,
253, 254, 254, 255 };
/**
* A faster replacement for (int)(java.lang.Math.sqrt(x)). Completely
* accurate for x < 2147483648 (i.e. 2^31)...
*/
static int sqrt(int x) {
int xn;
if (x >= 0x10000) {
if (x >= 0x1000000) {
if (x >= 0x10000000) {
if (x >= 0x40000000) {
xn = table[x >> 24] << 8;
} else {
xn = table[x >> 22] << 7;
}
} else {
if (x >= 0x4000000) {
xn = table[x >> 20] << 6;
} else {
xn = table[x >> 18] << 5;
}
}
xn = (xn + 1 + (x / xn)) >> 1;
xn = (xn + 1 + (x / xn)) >> 1;
return ((xn * xn) > x) ? --xn : xn;
} else {
if (x >= 0x100000) {
if (x >= 0x400000) {
xn = table[x >> 16] << 4;
} else {
xn = table[x >> 14] << 3;
}
} else {
if (x >= 0x40000) {
xn = table[x >> 12] << 2;
} else {
xn = table[x >> 10] << 1;
}
}
xn = (xn + 1 + (x / xn)) >> 1;
return ((xn * xn) > x) ? --xn : xn;
}
} else {
if (x >= 0x100) {
if (x >= 0x1000) {
if (x >= 0x4000) {
xn = (table[x >> 8]) + 1;
} else {
xn = (table[x >> 6] >> 1) + 1;
}
} else {
if (x >= 0x400) {
xn = (table[x >> 4] >> 2) + 1;
} else {
xn = (table[x >> 2] >> 3) + 1;
}
}
return ((xn * xn) > x) ? --xn : xn;
} else {
if (x >= 0) {
return table[x] >> 4;
}
}
}
return -1;
}
public static void main(String[] args){
System.out.println(sqrt(65));
}
}
如何实现sqrt()的更多相关文章
- 速算1/Sqrt(x)背后的数学原理
概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float nu ...
- [LeetCode] Sqrt(x) 求平方根
Implement int sqrt(int x). Compute and return the square root of x. 这道题要求我们求平方根,我们能想到的方法就是算一个候选值的平方, ...
- Leetcode 69. Sqrt(x)
Implement int sqrt(int x). 思路: Binary Search class Solution(object): def mySqrt(self, x): "&quo ...
- 欧几里得证明$\sqrt{2}$是无理数
选自<费马大定理:一个困惑了世间智者358年的谜>,有少许改动. 原译者:薛密 \(\sqrt{2}\)是无理数,即不能写成一个分数.欧几里得以反证法证明此结论.第一步是假定相反的事实是真 ...
- 求sqrt()底层效率问题(二分/牛顿迭代)
偶然看见一段求根的神代码,于是就有了这篇博客: 对于求根问题,通常我们可以调用sqrt库函数,不过知其然需知其所以然,我们看一下求根的方法: 比较简单方法就是二分咯: 代码: #include< ...
- 【leetcode】Sqrt(x)
题目描述: Implement int sqrt(int x). Compute and return the square root of x. 实现开根号,并且返回整数值(这个很重要,不是整数的话 ...
- Leetcode Sqrt(x)
参考Babylonian method (x0 越接近S的平方根越好) class Solution { public: int sqrt(double x) { ) ; , tolerance ...
- Sqrt(x) - LintCode
examination questions Implement int sqrt(int x). Compute and return the square root of x. Example sq ...
- 3.Sqrt(x)
要求:Implement int sqrt(int x). Compute and return the square root of x. 解决方法: 1.牛顿法(Newton's method) ...
- UVa 12505 Searching in sqrt(n)
传送门 一开始在vjudge上看到这题时,标的来源是CSU 1120,第八届湖南省赛D题“平方根大搜索”.今天交题时CSU突然跪了,后来查了一下看哪家OJ还挂了这道题,竟然发现这题是出自UVA的,而且 ...
随机推荐
- go语言从例子开始之Example29.关闭通道
关闭 一个通道意味着不能再向这个通道发送值了.这个特性可以用来给这个通道的接收方传达工作已经完成的信息. Example: package main import "fmt" // ...
- flask开发问题小记
前因 最近在使用flask开发一个APP的后端时出现了一些小问题.我使用sqlalchemy建立了如下多对多关系: 中间表 user_manager_group = db.Table('manage_ ...
- c++网络库之 poco
java 不好吗?java面向对象很好啊. poco 做的像 java 用起来更面向对象,这是优势.开发速度提升很多.boost 那种是给大牛看的.我觉得 poco 用起来方便,不清楚的地方随时看源码 ...
- 强大的性能监控pidstat
前言 pidstat 可以监控单个任务.比如CPU.内存.IO.上下文切换.详细参考 man pidstat 安装 yum install sysstat 使用 1.监控所有活动进程 pidstat ...
- redis笔记3-命令
通用命令:keys * --查询所有keykeys list* --查询list开头的keytype key1 --查询键对应的value类型del key --删除指定的keyttl key --查 ...
- 错误描述:fatal error C1010: 在查找预编译头时遇到意外的文件结尾。是否忘记了向源中添加“#include "stdafx.h"”?(转)
错误分析: 此错误发生的原因是编译器在寻找预编译指示头文件(默认#include "stdafx.h")时,文件未预期结束.没有找到预编译指示信息的头文件"stdafx. ...
- Elasticsearch:使用function_score及soft_score定制搜索结果的分数
我们将介绍使用function_score的基础知识,并介绍一些function core技术非常有用和有效的用例. 介绍 评分的概念是任何搜索引擎(包括Elasticsearch)的核心.评分可以粗 ...
- 因为看见,所以发现:QBotVariant谢绝落幕
互联网给人带来便捷的同时,其公开大量的资源也同样给恶意利用者带了便捷,越来越多公开的恶意程序源码降低了对外攻击.入侵的难度,使得安全问题愈加严重. 阿里云安全团队从今年5月份监测到一BOT家族,其样本 ...
- php ceil()函数 语法
php ceil()函数 语法 ceil()函数怎么用? php ceil()函数的作用是向上舍入为最接近的整数,语法是ceil(number),表示返回不小于参数X的下一个整数,如果没有小数,返回参 ...
- 【LeetCode 32】最长有效括号
题目链接 [题解] 设dp[i]表示以第i个字符结尾的最长有效括号的长度. 显然只要考虑s[i]==')'的情况 则如果s[i-1]=='(',则dp[i] = dp[i-2]+2; 如果s[i-1] ...