[POI2015]Myjnie

Time Limit: 40 Sec Memory Limit: 256 MBSec Special Judge

Description

有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]。

有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个进行一次消费。但是如果这个最便宜的价格大于c[i],那么这个人就不洗车了。

请给每家店指定一个价格,使得所有人花的钱的总和最大。

Input

第一行包含两个正整数n,m(1<=n<=50,1<=m<=4000)。

接下来m行,每行包含三个正整数a[i],b[i],ci

Output

第一行输出一个正整数,即消费总额的最大值。

第二行输出n个正整数,依次表示每家洗车店的价格p[i],要求1<=p[i]<=500000。

若有多组最优解,输出任意一组。

Sample Input

7 5

1 4 7

3 7 13

5 6 20

6 7 1

1 2 5

Sample Output

43

5 5 13 13 20 20 13

这个区间dp有点东西。。。
离散化一下
f[l][r][t] 表示完全属于区间的人中最小值刚好是t的最优贡献。
g[l][r][t] 表示完全属于区间的人中最小值大于等于t的最优贡献。
然后你的转移就成了枚举最小值是哪个店。
f[l][r][t]=max(g[l][i-1][t]+g[i+1][r][t]+cost(i))
然而这个cost(i)有点尴尬。。。你可能还有有个预处理h[i][j]表示在处理当前这个dp区间的情况下,包含i这个位置的人且在最小值为j的情况下能给钱的人有多少个。。。
写吧~

1 mol 乱七八糟的错误。。。。。调一万年啊。。。。

```c++

include<bits/stdc++.h>

using namespace std;

const int maxm = 4004;

struct lpl{

int a, b, c;

}ini[maxm];

struct lpd{

int g, f, pos;

}dp[55][55][maxm];

int n, m, k, ans[55], pl[maxm], nam[maxm], mark[500005], h[55][maxm];

inline bool cmp(lpl A, lpl B) {return A.b == B.b ? A.a < B.a : A.b < B.b;}

inline void putit()

{

scanf("%d%d", &n, &m);

for(int i = 1; i <= m; ++i) scanf("%d%d%d", &ini[i].a, &ini[i].b, &ini[i].c), pl[i] = ini[i].c;

sort(ini + 1, ini + m + 1, cmp);

sort(pl + 1, pl + m + 1); k = 0;

for(int i = 1; i <= m; ++i)

if(pl[i] != pl[i - 1]){

k++; nam[k] = pl[i]; mark[pl[i]] = k;

}

for(int i = 1; i <= m; ++i) ini[i].c = mark[ini[i].c];

}

inline void workk()

{

for(int l = n; l >= 1; --l)

for(int r = l; r <= n; ++r){

for(int i = l; i <= r; ++i)

for(int j = 1; j <= k; ++j)

h[i][j] = 0;

for(int i = 1; i <= m && ini[i].b <= r; ++i){

if(ini[i].a < l) continue;

for(int j = ini[i].a; j <= ini[i].b; ++j) h[j][ini[i].c]++;

}

for(int i = l; i <= r; ++i)

for(int j = k - 1; j >= 1; --j)

h[i][j] += h[i][j + 1];

for(int i = l; i <= r; ++i)

for(int j = k; j >= 1; --j){

int tmp = dp[l][i - 1][j].g + dp[i + 1][r][j].g + h[i][j] * nam[j];

if(dp[l][r][j].f < tmp){

dp[l][r][j].f = tmp; dp[l][r][j].pos = i;

}

dp[l][r][j].g = max(dp[l][r][j].f, dp[l][r][j + 1].g);

}

}

}

void dfs(int l, int r, int t)

{

if(l > r) return;

if(dp[l][r][t].g == 0){

for(int i = l; i <= r; ++i) ans[i] = nam[t];

return;

}

for(int i = t; i <= k; ++i){

if(dp[l][r][t].g == dp[l][r][i].f){

int now = dp[l][r][i].pos;

ans[now] = nam[i];

dfs(l, now - 1, i); dfs(now + 1, r, i);

break;

}

}

}

inline void print()

{

printf("%d\n", dp[1][n][1].g);

dfs(1, n, 1);

for(int i = 1; i <= n; ++i) printf("%d ", ans[i]);

}

int main()

{

putit();

workk();

print();

return 0;

}

bzoj [POI2015]Myjnie的更多相关文章

  1. 【BZOJ 4380】4380: [POI2015]Myjnie (区间DP)

    4380: [POI2015]Myjnie Description 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i].有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗 ...

  2. [POI2015]Myjnie

    [POI2015]Myjnie 题目大意: 有\(n(n\le50)\)家洗车店从左往右排成一排,每家店都有一个正整数价格\(d_i\). 有\(m(m\le4000)\)个人要来消费,第\(i\)个 ...

  3. BZOJ 4380 Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  4. 【BZOJ4380】[POI2015]Myjnie 区间DP

    [BZOJ4380][POI2015]Myjnie Description 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i].有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[ ...

  5. bzoj4380[POI2015]Myjnie dp

    [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 368  Solved: 185[S ...

  6. BZOJ 4380 [POI2015]Myjnie | DP

    链接 BZOJ 4380 题面 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]. 有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个 ...

  7. 【BZOJ】4380: [POI2015]Myjnie

    题解 区间dp,先离散化所有价值 \(f[i][j][k]\)表示\([i,j]\)区间里最小值为\(k\)的价值最大是多少 只考虑\(i <= a <= b <= j\)的区间,枚 ...

  8. @bzoj - 4380@ [POI2015] Myjnie

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 有 n 家洗车店从左往右排成一排,每家店都有一个正整数价格 p[ ...

  9. BZOJ4380 : [POI2015]Myjnie

    将$c$离散化,设: $f[i][j][k]$为区间$[i,j]$最小值为$k$的最大收益. $g[i][j][k]$为$\max(g[i][j][k..m])$. $h[i][j]$为对于当前DP区 ...

随机推荐

  1. python面试如何以相反顺序展示一个文件的内容?

    >>> for line in reversed(list(open('Today.txt'))): print(line.rstrip())containeritertools D ...

  2. 九、hibernate的查询(QBC)

    QBC:Query By Criteria 条件查询 比较适合组合条件查询 QBC查询 简单查询 创建Criteria对象:Criteria criteria = session.createCrit ...

  3. vue项目在webpack打包后背景图片显示不了

    加上 publicPath:'../../'即可

  4. mac OS 安装 Homebrew及常用命令

    Homebrew  是由国外大神 Max Howell 开发的一款包管理工具,类似Debian的apt,他可以安装任何你想安装的东西. 安装方法 命令行输入 /usr/bin/ruby -e &quo ...

  5. mysql各种join连接查询

    最近项目用到了几次sql join查询 来满足银行变态的需求:正好晚上自学时,看到了相关视频,所以记录下相关知识,下次再用时,根据如下图片,便可知道 怎么写sql; 注意点: 在join操作中的 on ...

  6. 转:KVM 虚拟机的克隆

    KVM 虚拟机的克隆 首先把需要克隆的源虚拟机先关闭,然后使用以下命令来进行克隆,注意我这里使用的是相对路径.   virsh shutdown VM02 virt-clone -o VM02 -n ...

  7. CNN基础三:预训练模型的微调

    上一节中,我们利用了预训练的VGG网络卷积基,来简单的提取了图像的特征,并用这些特征作为输入,训练了一个小分类器. 这种方法好处在于简单粗暴,特征提取部分的卷积基不需要训练.但缺点在于,一是别人的模型 ...

  8. Mybatis基于XML配置SQL映射器(二)

    Mybatis之XML注解 之前已经讲到通过 mybatis-generator 生成mapper映射接口和相关的映射配置文件: 下面我们将详细的讲解具体内容 首先我们新建映射接口文档  sysUse ...

  9. MD5、SHA1、DES加密和解密,Base64编码解码

    /// <summary> /// EncryptHelper 来自 www.Admin10000.com /// </summary> public class Encryp ...

  10. [CSP-S模拟测试]:简单的填数(贪心+模拟)

    题目描述 对于一个长度为$n$,且下标从$1$开始编号的序列$a$,我们定义它是「合法的」,当且仅当它满足以下条件:·$a_1=1$·对于$i\in [1,n),a_i\leqslant a_{i+1 ...